Answer:
432 in.^2
Step-by-step explanation:
The side of the suitcase is a rectangle. One length is 24 inches. The diagonal of the rectangle is 30 inches long. The diagonal is a hypotenuse of a right triangle. The length is a leg. We need to find the other leg.
We use the Pythagorean theorem,
a^2 + b^2 = c^2
(24 in.)^2 + b^2 = (30 in.)^2
576 in.^2 + b^2 = 900 in.^2
b^2 = 324 in.^2
b = sqrt(324 in^2)
b = 18 in
area of rectangle = length * width
A = 24 in. * 18 in.
A = 432 in.^2
Answer:
$618
Step-by-step explanation:
$1854 divided by 18 months = $103 per month
$103 x 12 months = $1236 paid in one year.
$1854originally owed - $1236 paid in a year = $618 still owed after one year of payments.
Answer: (b) A
<u>Step-by-step explanation:</u>
A: the center of the circle
B: the diameter of the circle
C: the radius of the circle
D: <em>not sure, could be the perimeter</em>
<em />
Circles are named by their center, so this is named "Circle A".
The solution to the given differential equation is yp=−14xcos(2x)
The characteristic equation for this differential equation is:
P(s)=s2+4
The roots of the characteristic equation are:
s=±2i
Therefore, the homogeneous solution is:
yh=c1sin(2x)+c2cos(2x)
Notice that the forcing function has the same angular frequency as the homogeneous solution. In this case, we have resonance. The particular solution will have the form:
yp=Axsin(2x)+Bxcos(2x)
If you take the second derivative of the equation above for yp , and then substitute that result, y′′p , along with equation for yp above, into the left-hand side of the original differential equation, and then simultaneously solve for the values of A and B that make the left-hand side of the differential equation equal to the forcing function on the right-hand side, sin(2x) , you will find:
A=0
B=−14
Therefore,
yp=−14xcos(2x)
For more information about differential equation, visit
brainly.com/question/18760518