1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
creativ13 [48]
3 years ago
5

Write 943.04 as a mixed number.

Mathematics
2 answers:
olga nikolaevna [1]3 years ago
8 0

Answer: 943 1/25

Step-by-step explanation:

FrozenT [24]3 years ago
5 0

Answer:

943 1/25

Step-by-step explanation:

You might be interested in
A housepainter mixed 5 gal of blue paint with every 9 gal of yellow paint I order to make green paint.Which ratio of gallons of
julia-pushkina [17]

Answer:

10:18   10 gal of blue paint and 18 gal of yellow paint.

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
41/25 as a percentage in math ???
Anarel [89]
165% , is your answer.
41 divided by 25 is 1.65 times 100.
8 0
3 years ago
Let f(x)= x^2-4x-c. Find a nonzero value of c such that f(c)=c.​
Dimas [21]

Answer:

The nonzero value of c will be:

  • c = 6

Step-by-step explanation:

Given the function

f\left(x\right)=\:x^2-4x-c

f\left(c\right)=\:c^2-4c-c

as

f(c) = c

so

c=\:c^2-4c-c

switching the sides

c^2-4c-c=c

subtract c from both sides

c^2-4c-c-c=c-c

c^2-6c=0

c\left(c-6\right)=0

Using the zero factor principle

\:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)

c=0\quad \mathrm{or}\quad \:c-6=0

so, the solutions to the quadratic equations are:

c=0,\:c=6

Therefore, a nonzero value of c will be:

  • c = 6
5 0
3 years ago
Please help me solve this problem ASAP
DiKsa [7]

\bold{\huge{\blue{\underline{ Solution }}}}

<h3><u>Given </u><u>:</u><u>-</u></h3>

  • <u>The </u><u>right </u><u>angled </u><u>below </u><u>is </u><u>formed </u><u>by </u><u>3</u><u> </u><u>squares </u><u>A</u><u>, </u><u> </u><u>B </u><u>and </u><u>C</u>
  • <u>The </u><u>area </u><u>of </u><u>square </u><u>B</u><u> </u><u>has </u><u>an </u><u>area </u><u>of </u><u>1</u><u>4</u><u>4</u><u> </u><u>inches </u><u>²</u>
  • <u>The </u><u>area </u><u>of </u><u>square </u><u>C </u><u>has </u><u>an </u><u>of </u><u>1</u><u>6</u><u>9</u><u> </u><u>inches </u><u>²</u>

<h3><u>To </u><u>Find </u><u>:</u><u>-</u></h3>

  • <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>area </u><u>of </u><u>square </u><u>A</u><u>? </u>

<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u><u> </u></h3>

The right angled triangle is formed by 3 squares

<u>We </u><u>have</u><u>, </u>

  • Area of square B is 144 inches²
  • Area of square C is 169 inches²

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{ Area \: of \: square =  Side × Side }

Let the side of square B be x

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 144 =  x × x }

\sf{ 144 =  x² }

\sf{ x = √144}

\bold{\red{ x = 12\: inches }}

Thus, The dimension of square B is 12 inches

<h3><u>Now, </u></h3>

Area of square C = 169 inches

Let the side of square C be y

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 169 =  y × y }

\sf{ 169 =  y² }

\sf{ y = √169}

\bold{\green{ y = 13\: inches }}

Thus, The dimension of square C is 13 inches.

<h3><u>Now, </u></h3>

It is mentioned in the question that, the right angled triangle is formed by 3 squares

The dimensions of square be is x and y

Let the dimensions of square A be z

<h3><u>Therefore</u><u>, </u><u>By </u><u>using </u><u>Pythagoras </u><u>theorem</u><u>, </u></h3>

  • <u>The </u><u>sum </u><u>of </u><u>squares </u><u>of </u><u>base </u><u>and </u><u>perpendicular </u><u>height </u><u>equal </u><u>to </u><u>the </u><u>square </u><u>of </u><u>hypotenuse </u>

<u>That </u><u>is</u><u>, </u>

\bold{\pink{ (Perpendicular)² + (Base)² = (Hypotenuse)² }}

<u>Here</u><u>, </u>

  • Base = x = 12 inches
  • Perpendicular = z
  • Hypotenuse = y = 13 inches

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ (z)² + (x)² = (y)² }

\sf{ (z)² + (12)² = (169)² }

\sf{ (z)² + 144 = 169}

\sf{ (z)² = 169 - 144 }

\sf{ (z)² = 25}

\bold{\blue{ z = 5 }}

Thus, The dimensions of square A is 5 inches

<h3><u>Therefore</u><u>,</u></h3>

Area of square

\sf{ = Side × Side }

\sf{ = 5 × 5  }

\bold{\orange{ = 25\: inches }}

Hence, The area of square A is 25 inches.

6 0
3 years ago
An isosceles triangle with base 12mm and perimeter 28mm
olga55 [171]

Answer:

Side lengths of 12,8,8

Step-by-step explanation:

In an isosceles triangle the base is different from the other 2 sides which are the same so

28=12+2x (x being the side of the repeat sides)

14=6+x (divide both sides by 2)

8=x (subtract 6 from both sides) so

Side lengths of 12,8,8

5 0
4 years ago
Other questions:
  • Describe how the values of a and k affect the graphical and tabular representations of the functions y=ax^2, y=x^2+k, and y=ax^2
    11·1 answer
  • Easy Exponents! Please Help!
    12·2 answers
  • NEED HELP FAST PLEASE<br> Evaluate the limit.<br><br> a.4<br> c.1<br> b.2<br> d.limit does not exist
    5·1 answer
  • You purchased 8 pound 10 ounces of candy from a candy shop you want to split it equally amoung 3 classrooms at a local school ho
    9·1 answer
  • Find all the missing elements. Round to the nearest tenth. PLEASE HELP ME ASAP!!!
    10·1 answer
  • Solve the system of linear equations by substitution
    7·1 answer
  • The coordinates of the vertices of △RST are R(−3, −1) , S(−1, −1) , and T(−4, −5) . The coordinates of the vertices of △R′S′T′ a
    13·1 answer
  • Identify the corresponding sides
    10·1 answer
  • Turn 7 11 4 2 = 10 into an equation
    15·1 answer
  • Mr. Smith is going on a 490 mile trip. He drives 140 miles in 2 hours. If he has 6 hours to drive at that rate, will he reach hi
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!