False
x-1(-3)=x+(-3)
x+3=x-3
3=-3
false
NO
Hello,
{x=y-3
{x+3y=13;
{x=y-3
{y-3+3y=13;
{x=y-3
{4y=13+3;
{x=y-3
{4y=16;
{x=y-3
{y=16:4=4;
{x=4-3=1
{y=4;
{x=1
{y=4
the solution to the system of equations is (1,4)
Bye :-)
Step-by-step explanation:
I hope this helps.......
If you want to easily find the solution you can use your calculator.
Just divide 77 by 110 and see the result.
77/110 = 0.7 = 7/10 = 70/100 = 70%
100% - 70% = 30%
Explanation
110*x=77
x=77/110, but the answer is not a percent
So 77/110 = ?/100 => ?=77*100/110=70 => 70%
But since 70% does not represent a percentage decreasement, we need to subtract it from the 100%
100% - 70% = 30%
Answer:
24.5 unit²
Step-by-step explanation:
Area of ∆
= ½ | x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂) |
= ½ | (-1)(3 -(-4)) + 6(-4 -3) + (-1)(3 - 3) |
= ½ | -7 - 42 |
= ½ | - 49 |
= ½ (49)
= 24.5 unit²
<u>Method 2:</u>
Let the vertices are A, B and C. Using distance formula:
AB = √(-1-6)² + (3-3)² = 7
BC = √(-6-1)² + (-4-3)² = 7√2
AC = √(-1-(-1))² + (4-(-3))² = 7
Semi-perimeter = (7+7+7√2)/2
= (14+7√2)/2
Using herons formula:
Area = √s(s - a)(s - b)(s - c)
here,
s = semi-perimeter = (14 + 7√2)/2
s - a = S - AB = (14+7√2)/2 - 7 = (7 + √2)/2
s - b = (14+7√2)/2 - 7√2 = (14 - 7√2)/2
s - c = (14+7√2)/2 - 7 = (7 + √2)/2
Hence, on solving for area using herons formula, area = 49/2 = 24.5 unit²