AB = 6 cm, AC = 12 cm, CD = ?
In triangle ABC, ∠CBA = 90°, therefore in triangle BCD ∠CBD = 90° also.
Since ∠BDC = 55°, ∠CBD = 90°, and there are 180 degrees in a triangle, we know ∠DCB = 180 - 55 - 90 = 35°
In order to find ∠BCA, use the law of sines:
sin(∠BCA)/BA = sin(∠CBA)/CA
sin(∠BCA)/6 cm = sin(90)/12 cm
sin(∠BCA) = 6*(1)/12 = 0.5
∠BCA = arcsin(0.5) = 30° or 150°
We know the sum of all angles in a triangle must be 180°, so we choose the value 30° for ∠BCA
Now add ∠BCA (30°) to ∠DCB = 35° to find ∠DCA.
∠DCA = 30 + 35 = 65°
Since triangle DCA has 180°, we know ∠CAD = 180 - ∠DCA - ∠ADC = 180 - 65 - 55 = 60°
In triangle DCA we now have all three angles and one side, so we can use the law of sines to find the length of DC.
12cm/sin(∠ADC) = DC/sin(∠DCA)
12cm/sin(55°) = DC/sin(60°)
DC = 12cm*sin(60°)/sin(55°)
DC = 12.686 cm
160 is the number i believe, hope it helps
Answer:
8 cm
Step-by-step explanation:
... BO/OD = AO/OC = 3/1
Written another way, this is ...
... OD : BO = 1 : 3
Now, BD = OD + BO, so we have
... BD : BO = (OD +BO) : BO = (1 +3) : 3 = 4 : 3
That is, BD = 4/3 × BO
... BD = 4/3 × 6 cm = 8 cm
_Award brainliest if helped!
Ans: 14,48,50 :D
<u>14²+48²=50²</u>
(a²+b²=c²) [right angle triangle relation of sides]