1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetllana [295]
3 years ago
12

Mr. Bell earns a yearly salary of $34,567. Mr. Lee earns $22,999 per year. How much more does Mr. Bell earn

Mathematics
1 answer:
bogdanovich [222]3 years ago
7 0

Answer:

34,567-22,999=11,568

You might be interested in
Maggie has 7 tiles with pictures of plants and 2 tiles with pictures of animals. Maggie keeps all the tiles on a mat with the pi
tatuchka [14]

Answer:6/8 - - - - simplified 3/4

Step-by-step explanation: removing the tile she just flipped over would be 6 plants and 2 animals so there would be 8 total tiles and you would putt the remaining tiles over it like so 6/8 meaning out of the remaining 8 tiles 6 of them are plants giving her a 6 in 8 chance or a 3 in 4 chance

8 0
3 years ago
Read 2 more answers
Choose the correct definition of (n/k) from below
Citrus2011 [14]

Answer:C.  \frac{n!}{k!(n-k)!}

Step-by-step explanation:

We know that a combination is a collection of the items where the order doesn't matter. It is a way to calculate the total outcomes of an event where order of the outcomes does not matter. It is denoted by C(n,k) or (n,k) or (n/k).

The formula for the number of combinations of n things taken r at a time is given by :-

C(n,k)=(n/k)=\frac{n!}{k!(n-k)!}

Hence, C is the right option.

8 0
3 years ago
Read 2 more answers
Math question!<br><br> <img src="https://tex.z-dn.net/?f=%20%5Cint%5C%20%7B%20%5Csqrt%7Btan%28x%29%7D%20%7D%20%5C%2C%20dx%20" id
stira [4]
Solution: \int\limits \:  \sqrt{tan(x)} \: dx
<span>1) pass: make the replacement
</span>y =  \sqrt{tan(x)} = tan(x)^ \frac{1}{2}
dy =  \frac{1}{2} *(tan\:x)^{- \frac{1}{2}} * sec^2x\:dx
2dy =  \frac{1}{y}*(tan^2*x+1)dx
2ydy = (y^4+1)dx
dx =  \frac{2y}{y^4+1} dy

2) pass: <span>We substitute in the integral of the statement
</span>I =  \int\limits  \sqrt{tanx} \: dx
I =  \int\limits \:y*  \frac{2y}{y^4+1} dy
I =  \int\limits\: \frac{2y^2}{y^4+1} dy

3) pass: <span>Using the Gauss Lemma, we will factor the polynomial (y⁴ + 1) knowing that there are no real roots, so we will directly try to factorize into two polynomials of degree 2:
</span>
y^4+1 = (y^2+ay+1)(y^2+cy+1)
y^4+1 = y^4+(a+c)y^3 + (ac+2)y^2+(a+c)y+1
<span>Make the system linear, to find the values ​​of "a" and "c".
</span>\left \{ {{a+c=0} \atop {ac+2=0}} \right.
a+c = 0 \:\to c=-a
ac+2=0\to ac = -2\to a*(-a) = -2\to -a^2 = -2\to a =\sqrt{2}
a+c = 0 \:\to c=-a\to c = - \sqrt{2}
We have:
(y^4+1)= (y^2+ \sqrt{2y} +1)(y^2- \sqrt{2y} +1)

4) pass: <span>We will use the partial fractions method, using the fraction from within the integral:
</span>\frac{2y^2}{y^4+1} =  \frac{Ay+B}{y^2+ \sqrt{2y}+1 } + \frac{Cy+D}{y^2- \sqrt{2y} +1}
=  \frac{(A+C)y^3+(- \sqrt{2}A+B+ \sqrt{2}C+D)y^2+(A- \sqrt{2}B+C+ \sqrt{2}D)y+(B+D)  }{y^4+1}

\longrightarrow   \left \{ {{A+C=0\to A=-C} \atop { -\sqrt{2}(A-C)+(B+D)=2 }} \right.
-\sqrt{2}(A-C)+(B+D)=2 \to - \sqrt{2} *2A+0=2\to A = - \frac{1}{ \sqrt{2} }
A+C=0\to C=-A\to C = - (- \frac{1}{ \sqrt{2} } )\to C =  \frac{1}{ \sqrt{2} }
(A+C)+ \sqrt{2} (D-B)=0\to 0+ \sqrt{2} (D-B)=0 \to B=D=0
B+D=0

5)pass: Adopt what was used above:

I =  \int\limits  \frac{ -\frac{1}{ \sqrt{2} }y }{y^2+ \sqrt{2}y+1 } dy+ \int\limits \frac{ \frac{1}{ \sqrt{2} }y }{y^2- \sqrt{2}y+1 } dy

I = - \frac{1}{ \sqrt{2} }  \underbrace{\int\limits \frac{y}{y^2+ \sqrt{2y}+1 }dy }_{I_1}+ \frac{1}{ \sqrt{2} } \underbrace{\int\limits \frac{y}{y^2- \sqrt{2y}+1 }dy }_{I_2}

6) pass: <span>Now, solve it separately
</span>
I_1 =  \int\limits \frac{y}{y^2+ \sqrt{2y}+1 }dy
2I_1 =  \int\limits\frac{2y}{y^2+ \sqrt{2y}+1 }dy =  \int\limits  \frac{2y- \sqrt{2}+ \sqrt{2}  }{y^2+ \sqrt{2y}+1 } dy
2I_1 = \int\limits\frac{2y+ \sqrt{2} }{y^2+ \sqrt{2y}+1 }dy - \int\limits\frac{ \sqrt{2} }{y^2+ \sqrt{2y}+1 }dy
2I_1 = ln|y^2+ \sqrt{2}y+1| -   \sqrt{2}  \int\limits  \frac{1}{(y \sqrt{2}+1)^2+1 }dy
\boxed{I_1 =  \frac{1}{2} ln|y^2+ \sqrt{2} y+1| - \frac{ \sqrt{2} }{2}  arctan(y \sqrt{2}+1 )}

and

I_2 = \int\limits \frac{y}{y^2- \sqrt{2y}+1 }dy
2I_2 = \int\limits\frac{2y}{y^2- \sqrt{2y}+1 }dy = \int\limits \frac{2y- \sqrt{2}+ \sqrt{2} }{y^2+ \sqrt{2y}+1 } dy
2I_2 = \int\limits\frac{2y- \sqrt{2} }{y^2- \sqrt{2y}+1 }dy - \int\limits\frac{ \sqrt{2} }{y^2- \sqrt{2y}+1 }dy
2I_2 = ln|y^2- \sqrt{2}y+1| + \sqrt{2} \int\limits \frac{1}{(y \sqrt{2}-1)^2+1 }dy
\boxed{I_2 = \frac{1}{2} ln|y^2- \sqrt{2} y+1| + \frac{ \sqrt{2} }{2} arctan(y \sqrt{2}-1 )}

7) pass: Let's use the expression of I

I = - \frac{I_1}{ \sqrt{2} } + \frac{I_2}{ \sqrt{2} }

I = -   \frac{ \frac{1}{2}ln|y^2+ \sqrt{2}y+1|- \frac{ \sqrt{2} }{2}arctan(y \sqrt{2} + 1)   }{ \sqrt{2} } + \frac{ \frac{1}{2}ln|y^2- \sqrt{2}y+1|+ \frac{ \sqrt{2} }{2}arctan(y \sqrt{2} - 1)   }{ \sqrt{2} }
I = - \frac{1}{2 \sqrt{2} } ln|y^2+ \sqrt{2} y +1|+\frac{1}{ \sqrt{2} } arctan(y \sqrt{2} +1)+
+\frac{1}{2 \sqrt{2} } ln|y^2- \sqrt{2} y +1|+\frac{1}{ \sqrt{2} } arctan(y \sqrt{2}-1)

<span>8) pass: Now, returning to the expression as a function of x, we finally arrive at the final answer:
</span>
I = - \frac{1}{2 \sqrt{2} } ln|y^2+ \sqrt{2} y +1|+\frac{1}{ \sqrt{2} } arctan(y \sqrt{2} +1)+
+\frac{1}{2 \sqrt{2} } ln|y^2- \sqrt{2} y +1|+\frac{1}{ \sqrt{2} } arctan(y \sqrt{2}-1)
I = - \frac{1}{2 \sqrt{2} } ln|( \sqrt{tan\:x})^2+ \sqrt{2}( \sqrt{tan\:x}) +1| +  \frac{1}{ \sqrt{2} } arctan(( \sqrt{tan\:x}) \sqrt{2} +1
+\frac{1}{2 \sqrt{2} } ln|( \sqrt{tan\:x})^2- \sqrt{2}( \sqrt{tan\:x}) +1| + \frac{1}{ \sqrt{2} } arctan(( \sqrt{tan\:x}) \sqrt{2} -1

Answer:

\boxed{I = - \frac{1}{2 \sqrt{2} } ln | ( \ tan\:x+\sqrt{2\:tan\:x} +1| +  \frac{1}{ \sqrt{2} }arctan( \sqrt{2\:tan\:x}  +1) +}
\boxed{+ \frac{1}{2 \sqrt{2} } ln | ( \ tan\:x-\sqrt{2\:tan\:x} +1| +  \frac{1}{ \sqrt{2} }arctan( \sqrt{2\:tan\:x}  -1) +C}} \end{array}}\qquad\quad\checkmark







<span>



</span>
4 0
4 years ago
What is cos(npi/2) and sin(npi/2) in fourier series cos(npi) is (-1)^n and sin(npi)=0 ?
Nat2105 [25]
The problem ask to fourier series of the trigonometric function base on the data you have been given in the problem, so the answer would be cos(pi/2n) = {(-1)^n/2 - if n is even, 0 - if n is odd} and sin(pi/2n) = {0- if n is even, (-1)^(n-1)/2 if n is odd}. I hope you are satisfied with my answer 
4 0
4 years ago
Read 2 more answers
Lawrence performs a survey to determine the number of minutes of exercise seventh-grade athletes get in one week. He gets a list
Delicious77 [7]
<span>He can choose his sample from every third person on each list rather than 10 people.</span>
7 0
3 years ago
Read 2 more answers
Other questions:
  • Maria will spin the arrow on the spinner 2 times.
    8·2 answers
  • What is the first quartile , Q1,of the following distribution ? 24,26,26,27,28,31,33,35,37,38,40,42,43,46,48,55,56
    9·2 answers
  • I don't know how to change that to a decimal can anyone help me plz
    5·1 answer
  • Alexander has a rectangular shed that has a width of 200cm. the length of it is 3 times the width what is the length?
    10·1 answer
  • A rectangle has a width W that is five units longer than its length L. Which equation expresses the rectangle area
    13·1 answer
  • (2,11) and (-3,6) slope we need to find b and write equations​
    13·2 answers
  • Question below here you can rear if not aks me please and thank you ​
    6·1 answer
  • What is the area (in square units) of the parallelogram formed by the points (0,0), (5,5), (4,2) and (1,3)?
    10·1 answer
  • Plz help for brainliest
    6·2 answers
  • Can Someone please help me with math? I am doing geometry right now, and I just don't understand the graphing part.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!