Answer:

Step-by-step explanation:
![{ \tt{\int\limits^2_1 {x^{2}-8x+8 } \, dx}} \\ \\ = { \tt{[ \frac{ {x}^{3} }{3} - 4 {x}^{2} + 8x ] {}^{2} _{1}}}](https://tex.z-dn.net/?f=%7B%20%5Ctt%7B%5Cint%5Climits%5E2_1%20%7Bx%5E%7B2%7D-8x%2B8%20%7D%20%5C%2C%20dx%7D%7D%20%5C%5C%20%20%5C%5C%20%3D%20%20%7B%20%5Ctt%7B%5B%20%5Cfrac%7B%20%7Bx%7D%5E%7B3%7D%20%7D%7B3%7D%20%20-%204%20%7Bx%7D%5E%7B2%7D%20%20%2B%208x%20%5D%20%7B%7D%5E%7B2%7D%20_%7B1%7D%7D%7D)
Substitute x with the limits:

Answer:
1. 260 years
2. 3/6 I think I'm not sure
3. 5:30
4. 50 kg (I think)
5. 5 ft ( 54 in. = 4.5 ft)
6. x = 4
7. 9
8. false
9. Perpendicular
10. 40
One plus one is equal to two
Domain is the left and right values, which means any parabola opening up or down will have a domain of (-∞, ∞)
The answer is 36. You can multiply top and bottom by 3, or cross multiply and divide.