Run more trials for the experiment to ensure that the small difference is not significant. B
1. Moro Gulf earthquake (1976)
2. Luzon earthquake (1990)
3. Casiguran earthquake (1968)
4. Mindoro earthquake (1994)
5. Bohol earthquake (2013)
I believe the answer you're looking for is cellular respiration.
Answer:
Archaea domain is closer to eukarya than bacteria because genetically they are more similar to Eukarya than Bacteria.
Explanation:
Options for this question are:
- <em>They both lack a nucleus and contain cytoplasm.
</em>
- <em>The unique functional adaptations of Archaea are more similar to Eukarya adaptations. </em>
- <em>
They both evolved in the same geological time period.
</em>
- <em>
</em><em>Genetically, the Archaea are more similar to Eukarya than Bacteria.
</em>
- <em>
They both have membrane-bound organelles.
</em>
- <em>
Archaea is not closer to Eukarya because it contains prokaryotic cells just like Bacteria.</em>
Archaea are unicellular prokaryotic organisms, which share many characteristics with bacteria, however, the existence of metabolic functions and genes similar to eukaryotic organisms suggest that there is a genetic link between the two. Even the enzymes responsible for genetic processing, such as transcriptases and translation enzymes, are similar to those in eukaryotic cells.
The theory that establishes the relationship between Archaea and Eukaryotic suggests the existence of a common ancestor, whose later evolution allowed an Archaea to join a protobacteria to form a eukaryotic cell, and hence their genetic relationship.
Learn more:
Three domains brainly.com/question/330218
Answer: The receptor site is the location that a drug binds to, altering the function of a biomolecule.
Explanation:
The drug receptors site, are the sites where the sites where the drug molecules bind. Basically, a low number of receptors exists and the extent to which the molecules occupy their sites differ with the concentration of drug. The receptor site changes the conformation and function of the binding molecule of the drug.