Answer:

Step-by-step explanation:


Rewrite equation: 


Factor out
:

Divide both sides by
:




Anything to the power of 1 is itself. Hence,


Answer:
Yes, there is enough evidence to say the proportions are the same.
Step-by-step explanation:
Null hypothesis: The proportions are the same.
Alternate hypothesis: The proportions are not the same.
Data given:
p1 = 51% = 0.51
n1 = 200
p2 = 48% = 0.48
n2 = 150
pooled proportion (p) = (n1p1 + n2p2) ÷ (n1 + n2) = (200×0.51 + 150×0.48) ÷ (200 + 150) = 174 ÷ 350 = 0.497
Test statistic (z) = (p1 - p2) ÷ sqrt[p(1-p)(1/n1 + 1/n2) = (0.51 - 0.48) ÷ sqrt[0.497(1-0.497)(1/200 + 1/150)] = 0.03 ÷ 0.054 = 0.556
The test is a two-tailed test. At 0.10 significance level the critical values -1.645 and 1.645
Conclusion:
Fail to reject the null hypothesis because the test statistic 0.556 falls within the region bounded by the critical values.
The mode is whichever one has the most so the mode would be 7. And the range is the highest number to the lowest. So 9-4 which is 5