Answer:
- as written, -2
- with denominator parentheses, 0
- with f(x)=ln(x) and denominator parentheses, -1/2
Step-by-step explanation:
The problem as stated asks for the limit as x approaches 2 of (0/x) -2.
As written, the limit is (0/2) -2 = -2.
<u>Explanation</u>: f(x) is a constant, so the numerator is 0. The ratio 0/x -2 is defined as -2 everywhere except x=0. So, the value at x=2 is 0/2 -2 = -2.
__
If you mean (f(2) -f(x))/(x -2), that limit is the limit of 0/(x-2) = 0 as x approaches 2.
<u>Explanation</u>: f(x) is a constant, so the numerator is 0. The ratio 0/(x-2) is zero everywhere except at x=2. The left limit and right limit are both 0 as x approaches 2. Since these limits agree, the limit is said to be 0.
__
If you mean f(x) = ln(x) and you want the limit of (f(2) -f(x))/(x -2), that value will be -1/2.
<u>Explanation</u>: The value of the ratio is 0/0 at x=2, so we can find the limit using L'Hôpital's rule. Differentiating numerator and denominator, we have ...
lim = (-1/x)/(1)
The value is -1/2 at x=2.
I attached a picture, see if you can see what I'm doing. Basically, I start by squaring everything to get rid of the radical, but just remember at the end to always, always check your answers, because squaring your answers could get rid of some negative numbers that could result in imaginary answers. The answer I came up with was a=5,-2
Answer:
$3,200
Step-by-step explanation:
384/12= 32
32*100= 3200
Answer:
8/9
Step-by-step explanation:
Answer:
h is a function
Step-by-step explanation:i know that h is a function i just dont know why