1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mr Goodwill [35]
3 years ago
12

7/9 - 5/6 - (-1/3) =

Mathematics
1 answer:
Tomtit [17]3 years ago
4 0
Answer: 0.278. I did the math. Can I has brainliest..?
You might be interested in
Simplify (4x+2)3 please for my
Mademuasel [1]

Answer:

(4x + 2) x 3

4x + 2 x 3

4x + 6

4x/4 = X + 6/4 = 1.5

X = 1.5 I think

P.S. hope this helped if it is correct may I get Brainliest

3 0
3 years ago
For which graph is the parent function y=x^2
mylen [45]

y = x²  is the parent function of a parabola opens up and has a vertex at (negative 1, negative 2)

<h3>What is the standard equation of a parabola ?</h3>

The standard equation of a parabola is given by

y =a(x-h)² +k

Vertex at h , k

It is given that It has to be chosen from the options that whose parent function is

y = x²

As the plot of the first option is done , which is shown in the figure ,

The parabola is given by

y = (x +1)² +2

and the parent function is y = x²

Therefore the Option 1 is the answer.

To know more about standard equation of a parabola

brainly.com/question/27915520

#SPJ1

3 0
2 years ago
Use the limit definition of the derivative to find the slope of the tangent line to the curve
ale4655 [162]

Answer:

\displaystyle f'(4) = 63

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Distributive Property

<u>Algebra I</u>

  • Expand by FOIL (First Outside Inside Last)
  • Factoring
  • Function Notation
  • Terms/Coefficients

<u>Calculus</u>

Derivatives

The definition of a derivative is the slope of the tangent line.

Limit Definition of a Derivative: \displaystyle f'(x)= \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}  

Step-by-step explanation:

<u>Step 1: Define</u>

f(x) = 7x² + 7x + 3

Slope of tangent line at x = 4

<u>Step 2: Differentiate</u>

  1. Substitute in function [Limit Definition of a Derivative]:                              \displaystyle f'(x)= \lim_{h \to 0} \frac{[7(x + h)^2 + 7(x + h) + 3]-(7x^2 + 7x + 3)}{h}
  2. [Limit - Fraction] Expand [FOIL]:                                                                    \displaystyle f'(x)= \lim_{h \to 0} \frac{[7(x^2 + 2xh + h^2) + 7(x + h) + 3]-(7x^2 + 7x + 3)}{h}
  3. [Limit - Fraction] Distribute:                                                                            \displaystyle f'(x)= \lim_{h \to 0} \frac{[7x^2 + 14xh + 7h^2 + 7x + 7h + 3] - 7x^2 - 7x - 3}{h}
  4. [Limit - Fraction] Combine like terms (x²):                                                     \displaystyle f'(x)= \lim_{h \to 0} \frac{14xh + 7h^2 + 7x + 7h + 3 - 7x - 3}{h}
  5. [Limit - Fraction] Combine like terms (x):                                                      \displaystyle f'(x)= \lim_{h \to 0} \frac{14xh + 7h^2 + 7h + 3 - 3}{h}
  6. [Limit - Fraction] Combine like terms:                                                           \displaystyle f'(x)= \lim_{h \to 0} \frac{14xh + 7h^2 + 7h}{h}
  7. [Limit - Fraction] Factor:                                                                                 \displaystyle f'(x)= \lim_{h \to 0} \frac{h(14x + 7h + 7)}{h}
  8. [Limit - Fraction] Simplify:                                                                               \displaystyle f'(x)= \lim_{h \to 0} 14x + 7h + 7
  9. [Limit] Evaluate:                                                                                                 \displaystyle f'(x) = 14x + 7

<u>Step 3: Find Slope</u>

  1. Substitute in <em>x</em>:                                                                                                \displaystyle f'(4) = 14(4) + 7
  2. Multiply:                                                                                                           \displaystyle f'(4) = 56 + 7
  3. Add:                                                                                                                  \displaystyle f'(4) = 63

This means that the slope of the tangent line at x = 4 is equal to 63.

Hope this helps!

Topic: Calculus AB/1

Unit: Chapter 2 - Definition of a Derivative

(College Calculus 10e)

3 0
3 years ago
Solve for x -3-8+6=7
Anton [14]
Move all numbers on one side and variable to the other side x=12
4 0
3 years ago
4 children share the cost of buying decoration for their friends birthday. If the decorations cost Rupees 87, how much does each
Bingel [31]
If the total cost is $87, and it is split among 4 children, each will pay $21.75, because 87/4= 21.75.
5 0
3 years ago
Other questions:
  • What number can be expressed as a nonrepeating, nonterminating decimal?
    9·2 answers
  • I need this answer ASAP
    13·2 answers
  • A point is reflected in the x- axis. The reflected point is (2,1).
    15·1 answer
  • An athlete runs a 600-meter course in 150 seconds. Find the average speed of the athlete. Round to the nearest tenth if necessar
    11·2 answers
  • What are the domain and range of the function f(x)=square root x-7 +9?
    8·2 answers
  • Which expression is equivalent to x+0.2x?
    10·2 answers
  • A green cross is formed by placing two rectangles of dimensions 8cm×4cm over
    7·1 answer
  • Taylor and Katy repeatedly toss a fair coin. Katy wins if heads are thrown, Taylor wins if tails are thrown, and the game ends w
    5·1 answer
  • Determine which is the better buy
    12·1 answer
  • Karen had 200 after spending y pesos on a notebook,she bought 4 colored pens with the rest of her money,what was the price of ea
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!