Answer: D
the other answers don't make sense with that sentence
The rate of disappearance of O2(g) under the same conditions is 2.5 × 10⁻⁵ m s⁻¹.
<h3>What is the rate law of a chemical equation? </h3>
The rate law of a chemical reaction equation is usually dependent on the concentration of the reactant species in the equation.
The chemical reaction given is;

The rate law for this reaction can be expressed as:
![\mathbf{= -\dfrac{1}{2}\dfrac{d[NO]}{dt} = -\dfrac{1}{1}\dfrac{d[O_2]}{dt}= +\dfrac{1}{2}\dfrac{d[NO_2]}{dt}}](https://tex.z-dn.net/?f=%5Cmathbf%7B%3D%20-%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%5BNO%5D%7D%7Bdt%7D%20%3D%20-%5Cdfrac%7B1%7D%7B1%7D%5Cdfrac%7Bd%5BO_2%5D%7D%7Bdt%7D%3D%20%2B%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%5BNO_2%5D%7D%7Bdt%7D%7D)
Recall that:
- The rate of disappearance of NO(g) = 5.0× 10⁻⁵ m s⁻¹.
- Since both NO and O2 are the reacting species;
Then:
- The rate of disappearance of NO(g) is equal to the rate of disappearance of O2(g)
![\mathbf{= -\dfrac{1}{2}\dfrac{d[NO]}{dt} = -\dfrac{1}{1}\dfrac{d[O_2]}{dt}}](https://tex.z-dn.net/?f=%5Cmathbf%7B%3D%20-%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%5BNO%5D%7D%7Bdt%7D%20%3D%20-%5Cdfrac%7B1%7D%7B1%7D%5Cdfrac%7Bd%5BO_2%5D%7D%7Bdt%7D%7D)

Thus;
The rate of disappearance of O2 = 2.5 × 10⁻⁵ m s⁻¹.
Therefore, we can conclude that two molecules of NO are consumed per one molecule of O2.
Learn more about the rate law here:
brainly.com/question/14945022
A would be the correct answer
That is easy it is rise over run!!!
y2-y1 over x2-x1
1. The correct statement that describes a Redox reaction is ( D ) ; A chemical reaction in which electrons are transferred between reactants.
2. The chemical formula that shows the correct subscripts is ( D ) BeF₂
3. The type of reaction that is shown is ; ( C ) decomposition reaction
A Redox reaction ( oxidation-reduction reaction ) involves the exchange/transfer electrons between reactants and the change in the oxidation number of the molecules involved in the reaction changes when an electron is either gained or lost.
Given that the Be has four ( 4 ) electrons and Fluorine has nine ( 9 ) electrons when they combine Fluorine will be left with an excess of electrons therefore the correct chemical formula will be BeF₂
The breaking up of an element into its smaller parts in a chemical reaction is known as a decomposition reaction.