
Use the rational zero theorem
In rational zero theorem, the rational zeros of the form +-p/q
where p is the factors of constant
and q is the factors of leading coefficient

In our f(x), constant is 2 and leading coefficient is 14
Factors of 2 are 1, 2
Factors of 14 are 1,2, 7, 14
Rational zeros of the form +-p/q are

Now we separate the factors


We ignore the zeros that are repeating

Option A is correct
Answer:
Don't be lazy, do it by yourself for more brain work!
Step-by-step explanation:
F(x) = 2x - 4
f(2 ≤ x) = 2(2 ≤ x) - 4
f(x ≥ 2) = 2(x ≥ 2) - 4
f(x ≥ 2) = 2(x) ≥ 2(2) - 4
f(x ≥ 2) = 2x ≥ 4 - 4
f(x ≥ 2) = 2x ≥ 0
f(x ≥ 2) = x ≥ 0
f(x) = 2x - 4
f(x ≤ 6) = 2(x ≤ 6) - 4
f(x ≤ 6) = 2(x) ≤ 2(6) - 4
f(x ≤ 6) = 2x ≤ 12 - 4
f(x ≤ 6) = 2x ≤ 8
f(x ≤ 6) = x ≤ 4
Step-by-step explanation:
h(x) = (f-g) (x) = 3x²+4x-10- 7x²+x-4
= -4x²+5x-14 (option D)
Answer:
A
Step-by-step explanation:
I did it on a test too