Each month that will give them 20$ for
Answer:
see explanation
Step-by-step explanation:
- 2.3 + (- 5.7)
reminder that + (- ) = -
To obtain - 3.4 it is likely that she added 2.3 to - 5.7
The solution is
- 2.3 - 5.7 = - 8
Answer:
![\hat{n}\ =\ \ \dfrac{\dfrac{x}{a^2}\hat{i}+\ \dfrac{y}{b^2}\hat{j}+\ \dfrac{z}{c^2}\hat{k}}{\sqrt{(\dfrac{x}{a^2})^2+(\dfrac{y}{b^2})^2+(\dfrac{z}{c^2})^2}}](https://tex.z-dn.net/?f=%5Chat%7Bn%7D%5C%20%3D%5C%20%5C%20%5Cdfrac%7B%5Cdfrac%7Bx%7D%7Ba%5E2%7D%5Chat%7Bi%7D%2B%5C%20%5Cdfrac%7By%7D%7Bb%5E2%7D%5Chat%7Bj%7D%2B%5C%20%5Cdfrac%7Bz%7D%7Bc%5E2%7D%5Chat%7Bk%7D%7D%7B%5Csqrt%7B%28%5Cdfrac%7Bx%7D%7Ba%5E2%7D%29%5E2%2B%28%5Cdfrac%7By%7D%7Bb%5E2%7D%29%5E2%2B%28%5Cdfrac%7Bz%7D%7Bc%5E2%7D%29%5E2%7D%7D)
Step-by-step explanation:
Given equation of ellipsoids,
![u\ =\ \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}](https://tex.z-dn.net/?f=u%5C%20%3D%5C%20%5Cdfrac%7Bx%5E2%7D%7Ba%5E2%7D%2B%5Cdfrac%7By%5E2%7D%7Bb%5E2%7D%2B%5Cdfrac%7Bz%5E2%7D%7Bc%5E2%7D)
The vector normal to the given equation of ellipsoid will be given by
![\vec{n}\ =\textrm{gradient of u}](https://tex.z-dn.net/?f=%5Cvec%7Bn%7D%5C%20%3D%5Ctextrm%7Bgradient%20of%20u%7D)
![=\bigtriangledown u](https://tex.z-dn.net/?f=%3D%5Cbigtriangledown%20u)
![=\ (\dfrac{\partial{}}{\partial{x}}\hat{i}+ \dfrac{\partial{}}{\partial{y}}\hat{j}+ \dfrac{\partial{}}{\partial{z}}\hat{k})(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2})](https://tex.z-dn.net/?f=%3D%5C%20%28%5Cdfrac%7B%5Cpartial%7B%7D%7D%7B%5Cpartial%7Bx%7D%7D%5Chat%7Bi%7D%2B%20%5Cdfrac%7B%5Cpartial%7B%7D%7D%7B%5Cpartial%7By%7D%7D%5Chat%7Bj%7D%2B%20%5Cdfrac%7B%5Cpartial%7B%7D%7D%7B%5Cpartial%7Bz%7D%7D%5Chat%7Bk%7D%29%28%5Cdfrac%7Bx%5E2%7D%7Ba%5E2%7D%2B%5Cdfrac%7By%5E2%7D%7Bb%5E2%7D%2B%5Cdfrac%7Bz%5E2%7D%7Bc%5E2%7D%29)
![=\ \dfrac{\partial{(\dfrac{x^2}{a^2})}}{\partial{x}}\hat{i}+\dfrac{\partial{(\dfrac{y^2}{b^2})}}{\partial{y}}\hat{j}+\dfrac{\partial{(\dfrac{z^2}{c^2})}}{\partial{z}}\hat{k}](https://tex.z-dn.net/?f=%3D%5C%20%5Cdfrac%7B%5Cpartial%7B%28%5Cdfrac%7Bx%5E2%7D%7Ba%5E2%7D%29%7D%7D%7B%5Cpartial%7Bx%7D%7D%5Chat%7Bi%7D%2B%5Cdfrac%7B%5Cpartial%7B%28%5Cdfrac%7By%5E2%7D%7Bb%5E2%7D%29%7D%7D%7B%5Cpartial%7By%7D%7D%5Chat%7Bj%7D%2B%5Cdfrac%7B%5Cpartial%7B%28%5Cdfrac%7Bz%5E2%7D%7Bc%5E2%7D%29%7D%7D%7B%5Cpartial%7Bz%7D%7D%5Chat%7Bk%7D)
![=\ \dfrac{2x}{a^2}\hat{i}+\ \dfrac{2y}{b^2}\hat{j}+\ \dfrac{2z}{c^2}\hat{k}](https://tex.z-dn.net/?f=%3D%5C%20%5Cdfrac%7B2x%7D%7Ba%5E2%7D%5Chat%7Bi%7D%2B%5C%20%5Cdfrac%7B2y%7D%7Bb%5E2%7D%5Chat%7Bj%7D%2B%5C%20%5Cdfrac%7B2z%7D%7Bc%5E2%7D%5Chat%7Bk%7D)
Hence, the unit normal vector can be given by,
![\hat{n}\ =\ \dfrac{\vec{n}}{\left|\vec{n}\right|}](https://tex.z-dn.net/?f=%5Chat%7Bn%7D%5C%20%3D%5C%20%5Cdfrac%7B%5Cvec%7Bn%7D%7D%7B%5Cleft%7C%5Cvec%7Bn%7D%5Cright%7C%7D)
![=\ \dfrac{\dfrac{2x}{a^2}\hat{i}+\ \dfrac{2y}{b^2}\hat{j}+\ \dfrac{2z}{c^2}\hat{k}}{\sqrt{(\dfrac{2x}{a^2})^2+(\dfrac{2y}{b^2})^2+(\dfrac{2z}{c^2})^2}}](https://tex.z-dn.net/?f=%3D%5C%20%5Cdfrac%7B%5Cdfrac%7B2x%7D%7Ba%5E2%7D%5Chat%7Bi%7D%2B%5C%20%5Cdfrac%7B2y%7D%7Bb%5E2%7D%5Chat%7Bj%7D%2B%5C%20%5Cdfrac%7B2z%7D%7Bc%5E2%7D%5Chat%7Bk%7D%7D%7B%5Csqrt%7B%28%5Cdfrac%7B2x%7D%7Ba%5E2%7D%29%5E2%2B%28%5Cdfrac%7B2y%7D%7Bb%5E2%7D%29%5E2%2B%28%5Cdfrac%7B2z%7D%7Bc%5E2%7D%29%5E2%7D%7D)
![=\ \dfrac{\dfrac{x}{a^2}\hat{i}+\ \dfrac{y}{b^2}\hat{j}+\ \dfrac{z}{c^2}\hat{k}}{\sqrt{(\dfrac{x}{a^2})^2+(\dfrac{y}{b^2})^2+(\dfrac{z}{c^2})^2}}](https://tex.z-dn.net/?f=%3D%5C%20%5Cdfrac%7B%5Cdfrac%7Bx%7D%7Ba%5E2%7D%5Chat%7Bi%7D%2B%5C%20%5Cdfrac%7By%7D%7Bb%5E2%7D%5Chat%7Bj%7D%2B%5C%20%5Cdfrac%7Bz%7D%7Bc%5E2%7D%5Chat%7Bk%7D%7D%7B%5Csqrt%7B%28%5Cdfrac%7Bx%7D%7Ba%5E2%7D%29%5E2%2B%28%5Cdfrac%7By%7D%7Bb%5E2%7D%29%5E2%2B%28%5Cdfrac%7Bz%7D%7Bc%5E2%7D%29%5E2%7D%7D)
Hence, the unit vector normal to each point of the given ellipsoid surface is
![\hat{n}\ =\ \ \dfrac{\dfrac{x}{a^2}\hat{i}+\ \dfrac{y}{b^2}\hat{j}+\ \dfrac{z}{c^2}\hat{k}}{\sqrt{(\dfrac{x}{a^2})^2+(\dfrac{y}{b^2})^2+(\dfrac{z}{c^2})^2}}](https://tex.z-dn.net/?f=%5Chat%7Bn%7D%5C%20%3D%5C%20%5C%20%5Cdfrac%7B%5Cdfrac%7Bx%7D%7Ba%5E2%7D%5Chat%7Bi%7D%2B%5C%20%5Cdfrac%7By%7D%7Bb%5E2%7D%5Chat%7Bj%7D%2B%5C%20%5Cdfrac%7Bz%7D%7Bc%5E2%7D%5Chat%7Bk%7D%7D%7B%5Csqrt%7B%28%5Cdfrac%7Bx%7D%7Ba%5E2%7D%29%5E2%2B%28%5Cdfrac%7By%7D%7Bb%5E2%7D%29%5E2%2B%28%5Cdfrac%7Bz%7D%7Bc%5E2%7D%29%5E2%7D%7D)
Answer:
The horse-drawn carriage tour company can expect to take in $6960 when the charge per customer is $60.
Step-by-step explanation:
p(2) = 120 -2·2 = 116 . . . . . expected number of customers per day
c(2) = 50 +5·2 = 60 . . . . . . charge per customer
Then ...
(p·c)(2) = p(2)·c(2) = 116·60 = 6960 . . . . revenue for the day
Answer:
11847
Step-by-step explanation:
8900e ^0.026(11)
8900e^0.286
11846.7228518
answer 11847