Answer:
Kindly check explanation
Step-by-step explanation:
Given the following :
Group 1:
μ1 = 59.7
s1 = 2.8
n1 = sample size = 12
Group 2:
μ2 = 64.7
s2 = 8.3
n2 = sample size = 15
α = 0.1
Assume normal distribution and equ sample variance
A.)
Null and alternative hypothesis
Null : μ1 = μ2
Alternative : μ1 < μ2
B.)
USing the t test
Test statistic :
t = (m1 - m2) / S(√1/n1 + 1/n2)
S = √(((n1 - 1)s²1 + (n2 - 1)s²2) / (n1 + n2 - 2))
S = √(((12 - 1)2.8^2 + (15 - 1)8.3^2) / (12 + 15 - 2))
S = 6.4829005
t = (59.7 - 64.7) / 6.4829005(√1/12 + 1/15)
t = - 5 / 2.5108165
tstat = −1.991384
Decision rule :
If tstat < - tα, (n1+n2-2) ; reject the Null
tstat < t0.1,25
From t table :
-t0.1, 25 = - 1.3163
tstat = - 1.9913
-1.9913 < - 1.3163 ; Hence reject the Null
Answer:
b. {-3, -1, 2}
Step-by-step explanation:
An <u>ordered pair</u> is a pair of elements written as (x, y) where the first element is the input value and the second element is the output value.
The <u>domain</u> is the set of input values (x-values)
The <u>range</u> is the set of output values (y-values)
Therefore, for the given ordered pairs (-1, 0), (2, 4) and (-3, 6)
Domain: {-3, -1, 2}
Range: {0, 4, 6}
Answer:
The unique solution to the system is (x,y){(-9,-3)}
Step-by-step explanation:
x - y = -6 equation 1
5x + 6y = -63 equation 2
We will find the value of x from equation 1.
x= y-6
Now put the value of x in equation 2.
5(y-6)+6y = -63
5y-30+6y = -63
Combine the like terms:
5y+6y= -63+30
11y = -33
Divide both sides by 11.
11y/11 = -33/11
y = -3
Now put the value y = -3 in x=y-6
x = y-6
x= -3-6
x= -9
Therefore The unique solution to the system is (x,y){(-9,-3)} ....
Answer:
98
Step-by-step explanation:
7 flowers a day time 14 days equals 98