Answer: 756
Step-by-step explanation:
Given : The proportion of adults over 50 never graduated from high school. = 0.23
Margin of error : E=0.03
Significance level : 
Critical value : 
The formula to find the sample size is given by:_

i.e. 
Hence, the required minimum sample size = 756
Answer:
(- 1, 1 )
Step-by-step explanation:
Given the 2 equations
2x - y = - 3 → (1)
x + y = 0 → (2)
Adding the 2 equations term by term will eliminate the term in y, that is
3x = - 3 ( divide both sides by 3 )
x = - 1
Substitute x = - 1 into either of the 2 equations and solve for y
Substituting into (2)
- 1 + y = 0 ( add 1 to both sides )
y = 1
Solution is (- 1, 1 )
Answer:
City @ 2017 = 8,920,800
Suburbs @ 2017 = 1, 897, 200
Step-by-step explanation:
Solution:
- Let p_c be the population in the city ( in a given year ) and p_s is the population in the suburbs ( in a given year ) . The first sentence tell us that populations p_c' and p_s' for next year would be:
0.94*p_c + 0.04*p_s = p_c'
0.06*p_c + 0.96*p_s = p_s'
- Assuming 6% moved while remaining 94% remained settled at the time of migrations.
- The matrix representation is as follows:
- In the sequence for where x_k denotes population of kth year and x_k+1 denotes population of x_k+1 year. We have:
![\left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right] x_k = x_k_+_1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%20x_k%20%3D%20x_k_%2B_1)
- Let x_o be the populations defined given as 10,000,000 and 800,000 respectively for city and suburbs. We will have a population x_1 as a vector for year 2016 as follows:
![\left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right] x_o = x_1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%20x_o%20%3D%20x_1)
- To get the population in year 2017 we will multiply the migration matrix to the population vector x_1 in 2016 to obtain x_2.
![x_2 = \left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right]\left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right] x_o](https://tex.z-dn.net/?f=x_2%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%20x_o)
- Where,
![x_o = \left[\begin{array}{c}10,000,000\\800,000\end{array}\right]](https://tex.z-dn.net/?f=x_o%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D10%2C000%2C000%5C%5C800%2C000%5Cend%7Barray%7D%5Cright%5D)
- The population in 2017 x_2 would be:
![x_2 = \left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right]\left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right] \left[\begin{array}{c}10,000,000\\800,000\end{array}\right] \\\\\\x_2 = \left[\begin{array}{c}8,920,800\\1,879,200\end{array}\right]](https://tex.z-dn.net/?f=x_2%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D10%2C000%2C000%5C%5C800%2C000%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5Cx_2%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%2C920%2C800%5C%5C1%2C879%2C200%5Cend%7Barray%7D%5Cright%5D)