To determine the centroid, we use the equations:
x⁻ =
1/A (∫ (x dA))
y⁻ = 1/A (∫ (y dA))
First, we evaluate the value of A and dA as follows:
A = ∫dA
A = ∫ydx
A = ∫3x^2 dx
A = 3x^3 / 3 from 0 to 4
A = x^3 from 0 to 4
A = 64
We use the equations for the centroid,
x⁻ = 1/A (∫ (x dA))
x⁻ = 1/64 (∫ (x (3x^2 dx)))
x⁻ = 1/64 (∫ (3x^3 dx)
x⁻ = 1/64 (3 x^4 / 4) from 0 to 4
x⁻ = 1/64 (192) = 3
y⁻ = 1/A (∫ (y dA))
y⁻ = 1/64 (∫ (3x^2 (3x^2 dx)))
y⁻ = 1/64 (∫ (9x^4 dx)
y⁻ = 1/64 (9x^5 / 5) from 0 to 4
y⁻ = 1/64 (9216/5) = 144/5
The centroid of the curve is found at (3, 144/5).
Answer:
following
Step-by-step explanation:
Answer:
27
Step-by-step explanation:
The answer is x=27
Answer:
3n + 2
Step-by-step explanation:
-n+(-4)-(-4n)+6
= -n -4 +4n +6 [positive plus negative = negative; ∴ +(-4) = -4
=4n - n +6 - 4 negative plus negative = positive; ∴ -(-4n) = 4]
now subtract n from 4n and subtract 4 from 6
=3n + 2
Answer:231.5
Step-by-step explanation:
If you divide 926 by 4 you will get 231.5