1) 1/7
2) 1/2
3) 1/9
4) 1/4
5) 1/3
6) 2/15
hope this helped:)
Answer:
The third choice
Step-by-step explanation:
We need to find the slope and y-intercept of the line and then put it into y = mx = b form. To find the slope, pick a point on the line; I will use (-2, 5); count how many units up you need to go to get to the next point on the line, which in this case it would be 3. The count how many to the right or left you would need to go, which is 1 to the left. Moving left means a negative, so it is -1. Your slope fraction would be
, since slope is rise over run. You can sub this fraction in for m in y = mx + b, which will give you a revised equation of y = -3x = b. To find the y intercept, or b, just find the point where the line crosses the y-axis, which is -1. So, the equation is now y = -3x - 1.The correct answer is third choice.
The displaced volume of the water, because of the submersion of the object, is equal to the volume of the object.
So to find the volume of the object we calculate the difference in volume of water:
33.1-25.1 = 8 ml
Since 1 mL of water has the volume of 1cm^3, then the volume of the object is 8 cm^3.
The density of the object is found by the formula:
density= mass/volume= (3 g) / (8 cm^3) = 3/8 (g/cm^3)= 0.375 g/cm^3
Answer: 0.375 g/cm^3
Answer:
![15 \sqrt[3]{2}](https://tex.z-dn.net/?f=15%20%5Csqrt%5B3%5D%7B2%7D%20)
Step-by-step explanation:
![{(27 \times 250)}^{ \frac{1}{3} } = {(27 \times 125 \times 2)}^{ \frac{1}{3} } \\ = {27}^{ \frac{1}{3} } \times {125}^{ \frac{1}{3} } \times {2}^{ \frac{1}{3} } \\ = \sqrt[ 3]{27} \times \sqrt[3]{125} \times \sqrt[3]{2} \\ = \sqrt[3]{ {3}^{3} } \times \sqrt[3]{ {5}^{3} } \times \sqrt[3]{2} \\ = 3 \times 5 \times \sqrt[3]{2} \\ = 15 \sqrt[3]{2}](https://tex.z-dn.net/?f=%20%7B%2827%20%5Ctimes%20250%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%3D%20%20%7B%2827%20%5Ctimes%20125%20%5Ctimes%202%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%7B27%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5Ctimes%20%20%7B125%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5Ctimes%20%20%7B2%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B%203%5D%7B27%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B125%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B3%5D%7B%20%7B3%7D%5E%7B3%7D%20%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B%20%7B5%7D%5E%7B3%7D%20%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%203%20%5Ctimes%205%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%2015%20%5Csqrt%5B3%5D%7B2%7D%20)