Knowledge of thermodynamics is required to design any device involving the interchange between heat and work, or the conversion of material to produce heat (combustion). Examples of practical thermodynamic devices: What is thermodynamics? The study of the relationship between work, heat, and energy
<span>Important information to solve the exercise :
Substance ΔHf (kJ/mol):
HCl(g)= −92.0 </span><span>kJ/mol
Al(OH)3(s)= −1277.0 </span><span><span>kJ/mol
</span> H2O(l)= −285.8 </span><span>kJ/mol
AlCl3(s) =−705.6 </span><span>kJ/mol
</span><span>Al(OH)3(s)+3HCl(g)→AlCl3(s)+3H2O(l)
reactants products
products- reactants:</span><span>
(−705.6) + (3 x −285.8) - ( −1277.0 ) - (3 x −92.0 ) = - 10.0 </span>kJ per mole at 25°C
<span>
</span>
Answer:
a) The theoretical yield is 408.45g of 
b) Percent yield = 
Explanation:
1. First determine the numer of moles of
and
.
Molarity is expressed as:
M=
- For the 
M=
Therefore there are 1.75 moles of 
- For the 
M=
}{1Lsolution}[/tex]
Therefore there are 2.0 moles of 
2. Write the balanced chemical equation for the synthesis of the barium white pigment,
:

3. Determine the limiting reagent.
To determine the limiting reagent divide the number of moles by the stoichiometric coefficient of each compound:
- For the
:

- For the
:

As the
is the smalles quantity, this is the limiting reagent.
4. Calculate the mass in grams of the barium white pigment produced from the limiting reagent.

5. The percent yield for your synthesis of the barium white pigment will be calculated using the following equation:
Percent yield = 
Percent yield = 
The real yield is the quantity of barium white pigment you obtained in the laboratory.
- The independent variable (IV) is the lemon juice mixture
- The dependent variable (DV) is the appearance of the green slime on the shower
- The control variable (CV) are time taken to spray, the amount of spray
- The experimental group (EG) is the side of the shower sprayed with lemon juice mixture
- The control group (CG) is the side of the shower sprayed with water.
INDEPENDENT VARIABLE
- Independent variable is the variable of an experiment that is changed by the experimenter in order to bring about a change. It is the variable being tested in the experiment. In this case, the IV is the lemon juice mixture tested on the green slime on the shower.
DEPENDENT VARIABLE:
- Dependent variable is the variable that is observed or measured in an experiment. It is also called responding variable. The DV in this case is the appearance of the green slime on the shower.
CONTROL VARIABLE:
- Control variable is the variable that is kept constant throughout the experiment for all groups. The CV is the same for all the groups and they include: time taken to spray, the same amount of spray
CONTROL GROUP
- Control group is the group that does not receive the independent variable or test in an experiment. In this case, the CG is the side of the shower sprayed with water.
EXPERIMENTAL GROUP:
- Experimental group is the group of ab experiment that receives the experimental treatment or independent variable. In this case, the EG is the side of the shower sprayed with lemon juice mixture.
Therefore, the IV, DV, CV, EG and CG of this experiment are as follows:
- The independent variable (IV) is the lemon juice mixture
- The dependent variable (DV) is the appearance of the green slime on the shower
- The control variable (CV) are time taken to spray, the amount of spray
- The experimental group (EG) is the side of the shower sprayed with lemon juice mixture
- The control group (CG) is the side of the shower sprayed with water.
Learn more: brainly.com/question/17498238?referrer=searchResults
Answer: B. 1:2
Explanation: Beryllium and chlorine forms a binary ionic compound. Ionic compound is formed when a metal loses its electrons to a receiving non metal. Beryllium (metal) has two valence electrons while chlorine (nonmetal) has seven valence electrons, and so a beryllium atom has to give out its two valence electrons to attain a duplet stable structure while a chlorine atom will gain one electron to attain its stable octet structure. In the reaction between beryllium and chlorine, two atoms of chlorine have to accept the two electrons from one beryllium atom to attain their stable octet structure.
The formula of the compound formed is BeCl2.