The delta H of -484 kJ is the heat given off when 2 moles of H2 react with 1 mole of O2 to make 2 moles of H2O. You don't have anywhere near that much reactants, only 1/4 as much
<span>actual delta H = 0.34 moles H2 x (-484 kJ / 2 moles H2) = 823 kJ </span>
<span>delta E = delta H - PdeltaV = 823 kJ - 0.41 kJ = 822 kJ</span>
a) Number of protons = number of electron in the atom = atomic number
So it has 7 protons answer
N-3 has gained 3 electron so number of electrons + 7+3
= 10 answer
Answer:
A. True
Explanation:
Carboxypeptidases are enzymes which function in the digestion of short peptides known as oligopeptides in the small intestine. Oligopeptides contain between 10 to 50 amino acid residues.
The two carboxypeptidases A and B involved in the digestion of proteins in the small intestine are secreted by the exocrine glands of the pancreas.They are both zinc-containing enzymes which remove successive carboxyl-terminal (C-terminal) residues from oligopeptides until free amino acids are obtained.
Since they function in this way, they can be used to determine the entire sequence of short peptides or oligopeptides.
Answer:
1. 58.5g/mol
2. 261g/mol
3. 158g/mol
4. 71g/mol
5. 44g/mol
Explanation:
The molar mass of a compound is the total mass of the sum of masses of all individual elements that make up the compound. First, we need to know the atomic masses of each element in a compound.
1. NaCl
Where; Na = 23, and Cl = 35.5
Molar mass of NaCl = 23 + 35.5
= 58.5g/mol
2. Ba(NO3)2:
Where; Ba = 137, N = 14, O = 16
Molar mass of Ba(NO3)2: 137 + {14 + 16(3)} 2
137 + (14 + 48)2
137 + (62)2
137 + 124
= 261g/mol
3. K(MnO4)
Where; K = 39, Mn = 55, O = 16
Molar mass of KMnO4 = 39 + 55 + 16(4)
= 94 + 64
= 158g/mol
4. Cl2
Where; Cl = 35.5
Molar mass of Cl2 = 35.5(2)
= 71g/mol
5. CO2
Where; C = 12, O = 16
Molar Mass of CO2 = 12 + 16(2)
= 12 + 32
= 44g/mol
According to Bohr, the electrons in an atom were only allowed to exist at certain energy levels. ... Just as children cannot hover between two steps on a staircase, Bohr suggested that electrons cannot hover between two energy levels in the atom. Bohr developed his energy level model further using principles from physic