Answer:
(A)
Explanation:
about 1.4 times the mass of our sun.
Answer: so when a turbine converts the K.E and the potential of any moving fluid (more likely liquid or gas) to energy. once the proc is started the turbine generato, the fluid such as water, steam, combus gasses, or air pushes s big series of blades that have mounted on a shaft, which then will rotate the shaft that’s conn to the generator
Explanation: hope this helped plz mark brainest
Answer:air flow and the movement from where it’s coming from
Explanation:
Answer:
a. 8.96 m/s b. 1.81 m
Explanation:
Here is the complete question.
a) A long jumper leaves the ground at 45° above the horizontal and lands 8.2 m away.
What is her "takeoff" speed v
0
?
b) Now she is out on a hike and comes to the left bank of a river. There is no bridge and the right bank is 10.0 m away horizontally and 2.5 m, vertically below.
If she long jumps from the edge of the left bank at 45° with the speed calculated in part a), how long, or short, of the opposite bank will she land?
a. Since she lands 8.2 m away and leaves at an angle of 45 above the horizontal, this is a case of projectile motion. We calculate the takeoff speed v₀ from R = v₀²sin2θ/g. where R = range = 8.2 m.
So, v₀ = √gR/sin2θ = √9.8 × 8.2/sin(2×45) = √80.36/sin90 = √80.36 = 8.96 m/s.
b. We use R = v₀²sin2θ/g to calculate how long or short of the opposite bank she will land. With v₀ = 8.96 m/s and θ = 45
R = 8.96²sin(2 × 45)/9.8 = 80.2816/9.8 = 8.192 m.
So she land 8.192 m away from her bank. The distance away from the opposite bank she lands is 10 - 8.192 m = 1.808 m ≅ 1.81 m
The correct answer is: Option (D) length, speed
Explanation:
According to Faraday's Law of Induction:
ξ = Blv
Where,
ξ = Emf Induced
B = Magnetic Induction
l = Length of the conductor
v = Speed of the conductor.
As you can see that ξ (Emf/voltage induction) is directly proportional to the length and the speed of the conductor. Therefore, the correct answer will be Option (D) Length, Speed