Answer:
The final velocity of the race car is 27.14 m/s
Explanation:
Given;
initial velocity of the race car, u = 18.5 m/s
acceleration of the race car, a = 2.47 m/s²
distance covered by the race car, s = 79.78 m
Apply the following kinematic equation to determine the final velocity of the race car.
v² = u² + 2as
v² = (18.5)² + 2(2.47)(79.78)
v² = 736.363
v = √736.363
v = 27.14 m/s
Therefore, the final velocity of the racecar is 27.14 m/s
A is right because I took the test
Answer:
You would weigh very slightly more at sea level than at the top of a mountain, not enough for you to notice, but a measurable amount. Weight, which really means gravitational force, is proportional to the product of the masses of two objects acting on each other, in this case the giant earth and the minuscule you.
Explanation:
Uhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
Answer:
See the answer below
Explanation:
The optimal conditions for high biodiversity seem to be a <u>warm temperature</u> and <u>wet climates</u>.
<em>The tropical areas of the world have the highest biodiversity and are characterized by an average annual temperature of above 18 </em>
<em> and annual precipitation of 262 cm. The areas are referred to as the world's biodiversity hotspots. </em>
Consequently, it follows logically that the optimal conditions for high biodiversity would be a warm temperature of above 18
and wet environment with annual precipitation of not less than 262 cm.
The variation in temperature and precipitation across biomes can thus be said to be responsible for the variation in the level of biodiversity in them.