1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatuchka [14]
3 years ago
12

All biomes don’t have the same level of biodiversity. What seems to be the optimal conditions for high biodiversity?

Physics
1 answer:
irinina [24]3 years ago
6 0

Answer:

See the answer below

Explanation:

The optimal conditions for high biodiversity seem to be a <u>warm temperature</u> and <u>wet climates</u>.

<em>The tropical areas of the world have the highest biodiversity and are characterized by an average annual temperature of above 18 </em>^oC<em> and annual precipitation of 262 cm. The areas are referred to as the world's biodiversity hotspots. </em>

Consequently, it follows logically that the optimal conditions for high biodiversity would be a warm temperature of above 18 ^oC and wet environment with annual precipitation of not less than 262 cm.

The variation in temperature and precipitation across biomes can thus be said to be responsible for the variation in the level of biodiversity in them.

You might be interested in
A small logo is embedded in a thick block of crown glass (n = 1.52), 4.70 cm beneath the top surface of the glass. The block is
harkovskaia [24]

The concept required to solve this problem is the optical relationship that exists between the apparent depth and actual or actual depth. This is mathematically expressed under the equations.

d'w = d_w (\frac{n_{air}}{n_w})+d_g (\frac{n_{air}}{n_g})

Where,

d_g = Depth of glass

n_w = Refraction index of water

n_g = Refraction index of glass

n_{air} = Refraction index of air

d_w = Depth of water

I enclose a diagram for a better understanding of the problem, in this way we can determine that the apparent depth in the water of the logo would be subject to

d'w = d_w (\frac{n_{air}}{n_w})+d_g (\frac{n_{air}}{n_g})

d'w = (1.7cm) (\frac{1}{1.33})+(4.2cm)(\frac{1}{1.52})

d'w = 4.041cm

Therefore the distance below the upper surface of the water that appears to be the logo is 4.041cm

3 0
3 years ago
Discuss whether any work is being done by each of the following agents and, if so, whether the work is positive or negative: (a)
Aleks04 [339]

Answer:

a) As the chicken is still, the displacement is zero, which implies that the work is zero.

b) as the person is still there is no displacement therefore the work is zero

c) Lagraua applies a vertical force and the displacement is vertical, therefore the Work is positive

d) the force of gravity is directed downwards and the displacement is upwards, therefore the angle between it is 180º and the 180º fly is -1. Consequently the lock is negative

e) when the person meticulously feels the upward force and the displacement is downward, therefore the work is negative

Explanation:

Work is defined by the expression

        W = F. r

bold letters indicate vectors, we can write this expression as a module

        W= F r cos θ

where is at the angle between force and displacement.

Let's apply this expression to the different cases

a) As the chicken is still, the displacement is zero, which implies that the work is zero.

b) as the person is still there is no displacement therefore the work is zero

c) Lagraua applies a vertical force and the displacement is vertical, therefore the Work is positive

d) the force of gravity is directed downwards and the displacement is upwards, therefore the angle between it is 180º and the 180º fly is -1. Consequently the lock is negative

e) when the person meticulously feels the upward force and the displacement is downward, therefore the work is negative

7 0
3 years ago
~~~!Here's the question!~~~
gtnhenbr [62]
The answer would most likely be A since obviously gravity weighs things down which helps the every other masses stay settled in place
6 0
3 years ago
Read 2 more answers
9.58 A spring of equilibrium length L1 and spring constant k1 hangs from the ceiling. Mass m1 is suspended from its lower end. T
andrey2020 [161]

Answer:

The distance of m2 from the ceiling is L1 +L2 + m1g/k1 + m2g/k1 + m2g/k2.

See attachment below for full solution

Explanation:

This is so because the the attached mass m1 on the spring causes the first spring to stretch by a distance of m1g/k1 (hookes law). This plus the equilibrium lengtb of the spring gives the position of the mass m1 from the ceiling. The second mass mass m2 causes both springs 1 and 2 to stretch by an amout proportional to its weight just like above. The respective stretchings are m2g/k1 for spring 1 and m2g/k2 for spring 2. These plus the position of m1 and the equilibrium length of spring 2 L2 gives the distance of L2 from the ceiling.

4 0
3 years ago
What type of pollution did the Clean Water Act succeed in limiting?
Ilya [14]
Sewage. If thats not it, then I need to see your choices. :)
4 0
3 years ago
Read 2 more answers
Other questions:
  • A gamma ray with an energy of 3.40 × 10-14 joules strikes a photographic plate. We know that Planck's constant is 6.63 × 10-34 j
    13·2 answers
  • Select the correct answer.
    5·1 answer
  • An unstable nucleus results from too many or too few A) electrons. B) neutrons. C) protons. D) radons.
    8·1 answer
  • A mover loads a crate onto a truck bed 1.6m from the street using a ramp that is 4.6m long. What is a mechanical advantage?
    10·1 answer
  • In a football game, running back is at the 10 yard line and running up the field towards the 50 yard line, and runs for 3 second
    5·1 answer
  • What tool of dream analysis says that feelings and urges are hidden inside an event? condensation symbolism projection displacem
    11·2 answers
  • Mrs. Martin’s drive to school is 25 miles from her house. It takes her half an hour to get there. The speed limit is 40 mph. Was
    6·1 answer
  • In which situation is the maximum possible work done? A. when the angle between the force and displacement is 0° B. when the ang
    7·2 answers
  • PLEASE HELP:
    13·1 answer
  • g the eskimo pushes the same 50.0-kg sled over level ground with a force of 2.30 102 n exerted horizontally, moving it a distanc
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!