Three important properties of the diagonals of a rhombus that we need for this problem are:
1. the diagonals of a rhombus bisect each other
2. the diagonals form two perpendicular lines
3. the diagonals bisect the angles of the rhombus
First, we can let O be the point where the two diagonals intersect (as shown in the attached image). Using the properties listed above, we can conclude that ∠AOB is equal to 90° and ∠BAO = 60/2 = 30°.
Since a triangle's interior angles have a sum of 180°, then we have ∠ABO = 180 - 90 - 30 = 60°. This shows that the ΔAOB is a 30-60-90 triangle.
For a 30-60-90 triangle, the ratio of the sides facing the corresponding anges is 1:√3:2. So, since we know that AB = 10, we can compute for the rest of the sides.



Similarly, we have



Now, to find the lengths of the diagonals,


So, the lengths of the diagonals are 10 and 10√3.
Answer: 10 and 10√3 units
Answer:
She can use 4GB of data
You keep on adding five dollars on top of 50 until you reach 70.
Answer:
Step-by-step explanation:
Answer:
a.6.66
b.384
c.860
d.166
Step-by-step explanation:
<h3>Answer: C) 12</h3>
Explanation:
We have 4 options for the first choice and 3 options for the next. So there are 4*3 = 12 different combos possible. The tree diagram below shows 12 different paths to pick from. For instance, the right-most path has us pick the number 4 and the color yellow.