Answer:
1,2,3,4,5,6,7,8,9,10
2,4,6,8,10,12,14,16,18,20
3,6,9,12,15,18,21,24,27,30
Step-by-step explanation:
we have
(a+b)(3a-b)(2a+7b)
step 1
Solve
apply distributive property
(a+b)(3a-b)=3a^2-ab-3ab-b^2=3a^2-4ab-b^2
step 2
Multiply (3a^2-4ab-b^2) by (2a+7b)
6a^3+21a^2b-8a^2b-28ab^2-2ab^2-7b^3=6a^3+13a^2b-30ab^2-7b^3
answer is
<h2>6a^3+13a^2b-30ab^2-7b^3</h2>
Answer:
(a) 112, 28, 7, (7/4), (7/16)
Step-by-step explanation:
The sequence is given by the explicit formula

The terms of the sequence are :





18 and 21 can both be divided by 3
Answer:
Using the table, give the percentage associated with each unit of standard deviation in the standard normal curve to the
nearest hundredth.
х
Area, A(x) x
Area, A(x)
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0.0793
0.1554
0.2257
0.2881
0.3413
0.3849
0.4192
0.4452
0.4641
0.4772
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
0.4861
0.4918
0.4953
0.4974
0.4987
0.4993
0.4997
0.4998
0.4999
0.5000
Standard Deviation Percentage Area
-1 to 0
81.85 %
O to +1
34.13 %
Step-by-step explanation:
Using the table, give the percentage associated with each unit of standard deviation in the standard normal curve to the
nearest hundredth.
х
Area, A(x) x
Area, A(x)
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0.0793
0.1554
0.2257
0.2881
0.3413
0.3849
0.4192
0.4452
0.4641
0.4772
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
0.4861
0.4918
0.4953
0.4974
0.4987
0.4993
0.4997
0.4998
0.4999
0.5000
Standard Deviation Percentage Area
-1 to 0
81.85 %
O to +1
34.13 %
Using the table, give the percentage associated with each unit of standard deviation in the standard normal curve to the
nearest hundredth.
х
Area, A(x) x
Area, A(x)
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0.0793
0.1554
0.2257
0.2881
0.3413
0.3849
0.4192
0.4452
0.4641
0.4772
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
0.4861
0.4918
0.4953
0.4974
0.4987
0.4993
0.4997
0.4998
0.4999
0.5000
Standard Deviation Percentage Area
-1 to 0
81.85 %
O to +1
34.13 %