Answer:
Step-by-step explanation:
When the coefficients don't lend themselves to solution by substitution or elimination, then Cramer's Rule can be useful. It tells you the solutions to
are ...
- ∆ = bd -ea
- x = (bf -ec)/∆
- y = (cd -fa)/∆
Using that rule here, we find ...
∆ = 5·3 -6·2 = 3
a = (5·54 -6·41)/3 = 5·18 -2·41 = 90 -82 = 8
s = (41·3 -54·2)/3 = 41 -18·2 = 5
This math can be performed in your head, which is the intent of formulating the rule in this way.
_____
Similarly, if you expect the solutions to be small integers (as here), then graphing is another viable solution method.
_____
<em>Comment on the question</em>
We're sad to see than only 16 tickets were sold to the two performances by the symphonic band.
Answer:
The option "StartFraction 1 Over 3 Superscript 8" is correct
That is
is correct answer
Therefore
Step-by-step explanation:
Given expression is ((2 Superscript negative 2 Baseline) (3 Superscript 4 Baseline)) Superscript negative 3 Baseline times ((2 Superscript negative 3 Baseline) (3 squared)) squared
The given expression can be written as
![[(2^{-2})(3^4)]^{-3}\times [(2^{-3})(3^2)]^2](https://tex.z-dn.net/?f=%5B%282%5E%7B-2%7D%29%283%5E4%29%5D%5E%7B-3%7D%5Ctimes%20%5B%282%5E%7B-3%7D%29%283%5E2%29%5D%5E2)
To find the simplified form of the given expression :
![[(2^{-2})(3^4)]^{-3}\times [(2^{-3})(3^2)]^2](https://tex.z-dn.net/?f=%5B%282%5E%7B-2%7D%29%283%5E4%29%5D%5E%7B-3%7D%5Ctimes%20%5B%282%5E%7B-3%7D%29%283%5E2%29%5D%5E2)
( using the property
)
( using the property 
( combining the like powers )
( using the property
)

( using the property
)
Therefore
Therefore option "StartFraction 1 Over 3 Superscript 8" is correct
That is
is correct answer
This is tricky but I worked out the answer is A
Answer:
x=64
Step-by-step explanation:
Step-by-step explanation:
15 may be
<em>HOPE</em><em> </em><em>IT</em><em> </em><em>HELP</em><em> </em><em>U</em><em> </em><em>.</em><em>.</em><em>.</em>