Answer:
Step-by-step explanation:
We need to find the conditional probability P( T1 < s|N(t)=1 ) for all s ≥ 0
P( time of the first person's arrival < s till time t exactly 1 person has arrived )
= P( time of the first person's arrival < s, till time t exactly 1 person has arrived ) / P(exactly 1 person has arrived till time t )
{ As till time t, we know that exactly 1 person has arrived, thus relevant values of s : 0 < s < t }
P( time of the first person arrival < s, till time t exactly 1 person has arrived ) / P(exactly 1 person has arrived till time t )
= P( exactly 1 person has arrived till time s )/ P(exactly 1 person has arrived till time t )
P(exactly x person has arrived till time t ) ~ Poisson(kt) where k = lambda
Therefore,
P(exactly 1 person has arrived till time s )/ P(exactly 1 person has arrived till time t )
= [ kse-ks/1! ] / [ kte-kt/1! ]
= (s/t)e-k(s-t)
Given:
Number of flower pots = 6
To find:
The number of ways of the gardener to arrange the flower pots.
Solution:
Number of ways to arrange n items is n!.
So, the number of ways to arrange 6 pots is:
Therefore, there are total 720 ways of the gardener to arrange the flowerpots.
Answer:
3x- we need to know what x is to go any further
Step-by-step explanation:
We have been given that a geometric sequence's 1st term is equal to 1 and the common ratio is 6. We are asked to find the domain for n.
We know that a geometric sequence is in form , where,
= nth term of sequence,
= 1st term of sequence,
r = Common ratio,
n = Number of terms in a sequence.
Upon substituting our given values in geometric sequence formula, we will get:
Our sequence is defined for all integers such that n is greater than or equal to 1.
Therefore, domain for n is all integers, where .