Cell division is the process by which a parent cell divides into two or more daughter cells.[1]Cell division usually occurs as part of a larger cell cycle. In eukaryotes, there are two distinct types of cell division: a vegetative division, whereby each daughter cell is genetically identical to the parent cell (mitosis),[2] and a reproductive cell division, whereby the number of chromosomes in the daughter cells is reduced by half to produce haploid gametes(meiosis). Meiosis results in four haploid daughter cells by undergoing one round of DNA replication followed by two divisions. Homologous chromosomes are separated in the first division, and sister chromatids are separated in the second division. Both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. Both are believed to be present in the last eukaryotic common ancestor.
Prokaryotes (bacteria) undergo a vegetative cell division known as binary fission, where their genetic material is segregated equally into two daughter cells. All cell divisions, regardless of organism, are preceded by a single round of DNA replication.
For simple unicellular microorganisms such as the amoeba, one cell division is equivalent to reproduction – an entire new organism is created. On a larger scale, mitotic cell division can create progeny from multicellular organisms, such as plants that grow from cuttings. Mitotic cell division enables sexually reproducing organisms to develop from the one-celled zygote, which itself was produced by meiotic cell division from gametes. After growth, cell division by mitosis allows for continual construction and repair of the organism.[3] The human body experiences about 10 quadrillion cell divisions in a lifetime.[4]
The primary concern of cell division is the maintenance of the original cell's genome. Before division can occur, the genomic information that is stored in chromosomes must be replicated, and the duplicated genome must be separated cleanly between cells.[5] A great deal of cellular infrastructure is involved in keeping genomic information consistent between generations.
B is the answer to your question.
I hope this helped!
Answer:
la selección natural es el mecanismo principal por el cual la evolución ocurre
Explanation:
Charles Darwin fue un naturalista inglés que propuso la teoría de la evolución o 'descendencia con modificación' mediante el mecanismo de selección natural. Acorde a esta teoría, la selección natural se define como el mecanismo selectivo de reproducción diferencial de los individuos mejor adaptados a su ambiente. La variabilidad es el la materia prima sobre la cual la selección natural actúa, seleccionado aquellos individuos que presentan combinaciones fenotípicas y genotípicas más adaptadas para sobrevivir en un ambiente en particular. Los individuos de una población que son 'superiores adaptativamente' poseen más chances de sobrevivir y reproducirse, y por lo tanto tienen también más probabilidades de transmitir sus genes a la siguiente generación.
<span> RNA polymerase is commonly know as DNA-dependent RNA polymerase. It catalyzes the transcription of DNA to synthesize precursors of mRNA and most snRNA and microRNA. It is found in the core of eukaryotic cells. One of which combined rRNA in the nucleolus while the rest of the chemical blends other RNA in the nucleoplasm, some portion of the core yet outside the nucleolus.</span>