First set up the equation to find answer: y=7-x. Then add it to the variable. 3x-1(7-x)=1. So that makes it 3x+-7+-1=1. Add like terms -7+-1=-8, so 3x+-8=1. Now to find x just switch the 8 to the other side. So you end up with 3x=9 since when you take away a number from one side you need to use the opposite value so adding 8 to -8 will cancel it out, then add it to the other, then just divide. 9/3=3, from here just substitute to find y. y=7+3. y=10.
The answer is x=2 and y=5. I hope I helped!
<u>Correct Question</u>
In the table shown, the sum of each row is shown to the right of the row and the sum of each column is shown below the column. What is the value of L?

Answer:
L=7
Step-by-step explanation:
From the first row: 2J+K=5
Therefore: K=5-2J
From the second column, 2K+J=7
Substitute K derived above into 2K+J=7
2K+J=7
2(5-2J)+J=7
10-4J+J=7
-3J=7-10
-3J=-3
J=1
Recall: K=5-2J
K=5-2(1)=3
K=3
From the third column, J+2L=15
1+2L=15
2L=15-1=14
L=7
Therefore, the value of L=7
CHECK:

<h2>x > 9</h2>
Step-by-step explanation:
<h3><em>-</em><em>5</em><em> </em><em>(</em><em>x</em><em>-</em><em>1</em><em>)</em><em> </em><em>></em><em> </em><em>-</em><em>4</em><em>0</em></h3><h3><em>-</em><em>5</em><em>x</em><em> </em><em>+</em><em> </em><em>5</em><em> </em><em>></em><em> </em><em>-</em><em>4</em><em>0</em></h3><h3><em>-</em><em>5</em><em>x</em><em> </em><em>></em><em> </em><em>-</em><em>4</em><em>0</em><em> </em><em>-</em><em>5</em></h3><h3><em>-</em><em>5</em><em>x</em><em> </em><em>></em><em> </em><em>-</em><em>4</em><em>5</em></h3><h3><em>x</em><em> </em><em>></em><em> </em><em>-</em><em>4</em><em>5</em><em> </em><em>÷</em><em> </em><em>-</em><em>5</em></h3><h3><em>x</em><em> </em><em>></em><em> </em><em>9</em></h3>
<h2>MARK ME AS BRAINLIST</h2><h2>PLZ FOLLOW ME</h2>
Answer:(1,23)(2,21)(4,17)(6,13)
Step-by-step explanation:
Plug in the x values in the graph to the function. For example plug in 2 to it and you get 25-2(2) which transfers to 25-4. 25-4 equals 21
Answer:
The domain is all real numbers, the range is all positive numbers and the asymptote is x = 0 so the answer is the last option.