<span>the particle's initial position is at t=0, x = 0 - 0 + 4 = 4m
velocity is rate of change of displacement = dx/dt = d(t^3 - 9t^2 +4)/dt
= 3t^2 - 18t
acceleration is rate of change of velocity = d(3t^2 -18t)/dt
= 6t - 18
</span><span>the particle is stationary when velocity = 0, so 3t^2 - 18t =0
</span>3t*(t - 6) = 0
t = 0 or t = 6s
acceleration = 6t - 18 = 0
t = 3s
at t = 3s, velocity = 3(3^2) -18*3 = -27m/s
displacement = 3^3 - 9*3^2 +4 = -50m
<h2>
Answer:</h2>
For a real number a, a + 0 = a. TRUE
For a real number a, a + (-a) = 1. FALSE
For a real numbers a and b, | a - b | = | b - a |. TRUE
For real numbers a, b, and c, a + (b ∙ c) = (a + b)(a + c). FALSE
For rational numbers a and b when b ≠ 0, is always a rational number. TRUE
<h2>Explanation:</h2>
- <u>For a real number a, a + 0 = a. </u><u>TRUE</u>
This comes from the identity property for addition that tells us that<em> zero added to any number is the number itself. </em>So the number in this case is
, so it is true that:

- For a real number a, a + (-a) = 1. FALSE
This is false, because:

For any number
there exists a number
such that 
- For a real numbers a and b, | a - b | = | b - a |. TRUE
This is a property of absolute value. The absolute value means remove the negative for the number, so it is true that:

- For real numbers a, b, and c, a + (b ∙ c) = (a + b)(a + c). FALSE
This is false. By using distributive property we get that:

- For rational numbers a and b when b ≠ 0, is always a rational number. TRUE
A rational number is a number made by two integers and written in the form:
Given that
are rational, then the result of dividing them is also a rational number.
Answer:
7
Step-by-step explanation:
x + 8 = 15
Subtracting 8 from both sides,
x = 15 - 8
=> x = 7
Answer:
equivalent fractions of 3/5 are 6/10, 9/15 and 12/20.
Step-by-step explanation:
hope this helped! have a good day<3