A solid figure that has two congruent, parallel polygons as its bases would be a prism, and its sides are parallelograms.
From the origin you have to go 3 right put a dot and seven down put a dot, 13 down and one right ? Not sure
Answer:
Which question are you needing help with?
Step-by-step explanation:
8.9
The equation for the grain size is expressed as the equality:
Nm(M/100)^2 = 2^(n-1)
where
Nm = number of grains per square inch at magnification M.
M = Magnification
n = ASTM grain size number
Let's solve for n, then substitute the known values and calculate.
Nm(M/100)^2 = 2^(n-1)
log(Nm(M/100)^2) = log(2^(n-1))
log(Nm) + 2*log(M/100) = (n-1) * log(2)
(log(Nm) + 2*log(M/100))/log(2) = n-1
(log(Nm) + 2*log(M/100))/log(2) + 1 = n
(log(33) + 2*log(270/100))/log(2) + 1 = n
(1.51851394 + 2*0.431363764)/0.301029996 + 1 = n
(1.51851394 + 0.862727528)/0.301029996 + 1 = n
2.381241468/0.301029996 + 1 = n
7.910312934 + 1 = n
8.910312934 = n
So the ASTM grain size number is 8.9
If you want to calculate the number of grains per square inch, you'd use the
same formula with M equal to 1. So:
Nm(M/100)^2 = 2^(n-1)
Nm(1/100)^2 = 2^(8.9-1)
Nm(1/10000) = 2^7.9
Nm(1/10000) = 238.8564458
Nm = 2388564.458
Or about 2,400,000 grains per square inch.
Answer: A sequence of similar transformations of dilation and translation could map △ABC onto △A'B'C'.
Step-by-step explanation:
Similar transformations: If one figure can be mapped onto the other figure using a dilation and a congruent rigid transformation or a rigid transformation followed by dilation then the two figures are said to be similar.
In the attachment △ABC mapped onto △A'B'C' by a sequence of dilation from origin and scalar factor k followed by translation.