1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naily [24]
3 years ago
6

Given the data, as shown in the image below, determine if the distribution is uniformly distributed, symmetrically distributed,

Mathematics
1 answer:
Lubov Fominskaja [6]3 years ago
4 0

Answer:A

Step-by-step explanation:

You might be interested in
32% of what weight is 60 oz?
oksian1 [2.3K]

Answer:

200 oz

Step-by-step explanation:

Just use the equation

0.32x=200

6 0
3 years ago
Read 2 more answers
Which function has the same y-intercept as the function y equals 2/3 x - 3​
aleksley [76]

We have the function y = \frac{2}{3} x -3 and we want to find a function that has the same y-intercept than the previous function.

First, let's find the y-intercept by subtituting 0 for 'x'.

y = \frac{2}{3} (0) -3 = -3

Now that we found that y-intercept =-3, any lineal function of the type: y = ax - 3 will have the same y-intercept. Where 'a' can take all the real values.

Also, any quadratic function of the type: y=ax^{2} + bx - 3 will have the same y-intercept. Where 'a' and 'b' can take all the real values.

6 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%2By%3D1%7D%20%5Catop%20%7Bx-2y%3D4%7D%7D%20%5Cright.%20%5C%5C%5Clef
brilliants [131]

Answer:

<em>(a) x=2, y=-1</em>

<em>(b)  x=2, y=2</em>

<em>(c)</em> \displaystyle x=\frac{5}{2}, y=\frac{5}{4}

<em>(d) x=-2, y=-7</em>

Step-by-step explanation:

<u>Cramer's Rule</u>

It's a predetermined sequence of steps to solve a system of equations. It's a preferred technique to be implemented in automatic digital solutions because it's easy to structure and generalize.

It uses the concept of determinants, as explained below. Suppose we have a 2x2 system of equations like:

\displaystyle \left \{ {{ax+by=p} \atop {cx+dy=q}} \right.

We call the determinant of the system

\Delta=\begin{vmatrix}a &b \\c  &d \end{vmatrix}

We also define:

\Delta_x=\begin{vmatrix}p &b \\q  &d \end{vmatrix}

And

\Delta_y=\begin{vmatrix}a &p \\c  &q \end{vmatrix}

The solution for x and y is

\displaystyle x=\frac{\Delta_x}{\Delta}

\displaystyle y=\frac{\Delta_y}{\Delta}

(a) The system to solve is

\displaystyle \left \{ {{x+y=1} \atop {x-2y=4}} \right.

Calculating:

\Delta=\begin{vmatrix}1 &1 \\1  &-2 \end{vmatrix}=-2-1=-3

\Delta_x=\begin{vmatrix}1 &1 \\4  &-2 \end{vmatrix}=-2-4=-6

\Delta_y=\begin{vmatrix}1 &1 \\1  &4 \end{vmatrix}=4-3=3

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{3}{-3}=-1

The solution is x=2, y=-1

(b) The system to solve is

\displaystyle \left \{ {{4x-y=6} \atop {x-y=0}} \right.

Calculating:

\Delta=\begin{vmatrix}4 &-1 \\1  &-1 \end{vmatrix}=-4+1=-3

\Delta_x=\begin{vmatrix}6 &-1 \\0  &-1 \end{vmatrix}=-6-0=-6

\Delta_y=\begin{vmatrix}4 &6 \\1  &0 \end{vmatrix}=0-6=-6

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-6}{-3}=2

The solution is x=2, y=2

(c) The system to solve is

\displaystyle \left \{ {{-x+2y=0} \atop {x+2y=5}} \right.

Calculating:

\Delta=\begin{vmatrix}-1 &2 \\1  &2 \end{vmatrix}=-2-2=-4

\Delta_x=\begin{vmatrix}0 &2 \\5  &2 \end{vmatrix}=0-10=-10

\Delta_y=\begin{vmatrix}-1 &0 \\1  &5 \end{vmatrix}=-5-0=-5

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-10}{-4}=\frac{5}{2}

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-5}{-4}=\frac{5}{4}

The solution is

\displaystyle x=\frac{5}{2}, y=\frac{5}{4}

(d) The system to solve is

\displaystyle \left \{ {{6x-y=-5} \atop {4x-2y=6}} \right.

Calculating:

\Delta=\begin{vmatrix}6 &-1 \\4  &-2 \end{vmatrix}=-12+4=-8

\Delta_x=\begin{vmatrix}-5 &-1 \\6  &-2 \end{vmatrix}=10+6=16

\Delta_y=\begin{vmatrix}6 &-5 \\4  &6 \end{vmatrix}=36+20=56

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{16}{-8}=-2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{56}{-8}=-7

The solution is x=-2, y=-7

4 0
3 years ago
Activities of tariffs​
Dmitry [639]

Answer:

What??

Step-by-step explanation:

5 0
3 years ago
Can anyone please help me out and god bless yall!!!
Arada [10]

Answer:

The answer is the number two answer.

4 0
3 years ago
Read 2 more answers
Other questions:
  • How many sides does a polygon have with an interior angle of 108?
    5·1 answer
  • Find the perimeter of a tringle that had sides 1 1/8 1 3/8 1 5/8
    12·1 answer
  • 3x+8x+6=0. 9d+16=24d.
    8·2 answers
  • Name the coordinates of (-5-7) after they reflect over to the x-axis? (GMM)
    13·2 answers
  • Please help with simplifying​
    12·1 answer
  • Please please try to help me with most of my last 5 questions. If not, then at least 1 of them.
    13·1 answer
  • Home Depot is delivering washing machines to buyers. The washing machines are rectangular prisms that measure 5 ft x 5 ft x 6 ft
    12·1 answer
  • The table shows the amount of money Justin earns for mowing lawns. Is the relationship proportional? Why or why not?
    14·1 answer
  • Rectangle A is a scaled version of rectangle B. The dimensions of rectangle A are four times the dimensions of rectangle B. The
    10·1 answer
  • PLEASE I NEED HELP WITH C
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!