Given:
Point F,G,H are midpoints of the sides of the triangle CDE.

To find:
The perimeter of the triangle CDE.
Solution:
According to the triangle mid-segment theorem, the length of the mid-segment of a triangle is always half of the base of the triangle.
FG is mid-segment and DE is base. So, by using triangle mid-segment theorem, we get




GH is mid-segment and CE is base. So, by using triangle mid-segment theorem, we get




Now, the perimeter of the triangle CDE is:



Therefore, the perimeter of the triangle CDE is 56 units.
Answer:
See explaination
Step-by-step explanation:
Please kindly check attachment for the step by step solution of the given problem.
We can express this number in the standard form, which is simply 15xyz+10xy+5x. Alternatively, we can factor a 5 or an x out, receiving 5(3xyz+2xy+x) or x(15yz+10y+5). However, the most effective factorization is to factor out 5x, for a result of 5x(3yz+2y+1).
Answer:
There's no picture for us to refer to. I need a picture to answer the question.
Answer:
$109.99
Step-by-step explanation:
You just have to multiply 10x10.99