Answer:
P(4≤x≤7) = 2/3
Step-by-step explanation:
We'll begin by obtaining the sample space (S) i.e possible outcome of rolling both dice at the same time. This is illustrated below:
1,1 1,2 1,3 1,4 1,5 1,6
2,1 2,2 2,3 2,4 2,5 2,6
3,1 3,2 3,3 3,4 3,5 3,6
4,1 4,2 4,3 4,4 4,5 4,6
5,1 5,2 5,3 5,4 5,5 5,6
6,1 6,2 6,3 6,4 6,5 6,6
Adding the outcome together, the sample space (S) becomes:
2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12
Next, we shall obtain the event of 4≤x≤7. This is illustrated below:
4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7
Finally, we shall determine P(4≤x≤7). This can be obtained as follow:
Element in the sample space, n(S) = 36
Element in 4≤x≤7, n(4≤x≤7) = 24
Probability of 4≤x≤7, P(4≤x≤7) = ?
P(4≤x≤7) = n(4≤x≤7) / nS
P(4≤x≤7) = 24/36
P(4≤x≤7) = 2/3