The answer is "Point B is at (-8, -7)". let's remember that -8 represents the x-axis, and -7 represents the y-axis.
let me know if that helps !
The temperature outside a plane flying at an altitude of 5 kilometers is -17°C.
Given that,
- The ground temperature at the airport is 10 °C.
- The decrease in temperature is 5.4°C for each & every rise in 1 kilometer.
Based on the above information, the temperature outside should be
The decrease in the temperature should be
= 5.4×5
= 27°C
Now the final temperature is
= 10 - 27
= -17°C
Therefore we can conclude that the temperature outside a plane flying at an altitude of 5 kilometers is -17°C.
Learn more: brainly.com/question/20459283
<u>vertex</u>
y = 3(x - 2)² - 4
y = 3((x - 2)(x - 2)) - 4
y = 3(x² - 2x - 2x + 4) - 4
y = 3(x² - 4x + 4) - 4
y = 3(x²) - 3(4x) + 3(4) - 4
y = 3x² - 12x + 12 - 4
y = 3x² - 12x + 8
3x² - 12x + 8 = 0
x = <u>-(-12) +/- √((-12)² - 4(3)(8))</u>
2(3)
x = <u>12 +/- √(144 - 96)</u>
6
x = <u>12 +/- √(48)
</u> <u> </u> 6<u>
</u>x =<u> 12 +/- 6.93</u>
<u /> 6
x = 2 +/- 1.155
x = 2 + 1.155 x = 2 - 1.155
x = 3.155 x = 0.845
y = 3x² - 12x + 8
y = 3(3.155)² - 12(3.155) + 8
y = 3(1.334025) - 3.786 + 8
y = 4.002075 - 3.786 + 8
y = 0.216075 + 8
y = 8.216075
(x, y) = (3.155, 8.216075)
or
y = 3x² - 12x + 8
y = 3(0.845)² - 12(0.845) + 8
y = 3(0.714025) - 10.14 + 8
y = 2.142075 - 10.14 + 8
y = -7.857925 + 8
y = 0.142675
(x, y) = (0.845, 0.142675)
<u>y-intercept</u>
y = 3x² - 12x + 8
y = 3(0)² - 12(0) + 8
y = 3(0) - 0 + 8
y = 0 - 0 + 8
y = 0 + 8
0 = -y + 8
y = 8
(x, y) = (0, 8)
-------------------------------------------------------------------------------------------
<u>vertex</u>
y = 4(x - 5)² = 1
y = 4(x - 5)² - 1
y = 4((x - 5)(x - 5)) - 1
y = 4(x² - 5x - 5x + 25) - 1
y = 4(x² - 10x + 25) - 1
y = 4(x²) - 4(10x) + 4(25) - 1
y = 4x² - 40x + 100 - 1
y = 4x² - 40x + 99
4x² - 40x + 99 = 0
x = <u>-(-40) +/- √((-40)² - 4(4)(99))</u>
2(4)
x = <u>40 +/- √(1600 - 1584)</u>
8
x = <u>40 +/- √(16)</u>
8
x = <u>40 +/- 4</u>
8
x = 5 +/- 1/2
x = 5 + 1/2 x = 5 - 1/2
x = 5 1/2 x = 4 1/2
y = 4x² - 40x + 99
y = 4(5 1/2)² - 40(5 1/2) + 99
y = 4(30 1/4) - 220 + 99
y = 121 - 220 + 99
y = -99 + 99
y = 0
(x, y) = (5 1/2, 0)
or
y = 4x² - 40x + 99
y = 4(4 1/2)² - 40(4 1/2) + 99
y = 4(20 1/4) - 180 + 99
y = 81 - 180 + 99
y = -99 + 99
y = 0
(x, y) = (4 1/2, 0)
<u>y-intercept</u>
y = 4x² - 40x + 99
y = 4(0)² - 40(0) + 99
y = 4(0) - 0 + 99
y = 0 - 0 + 99
y = 0 + 99
y = 99
(x, y) = (0, 99)
--------------------------------------------------------------------------------------------
<u>vertex</u>
y = (x - 1)² = 2
y = (x - 1)² - 2
y = ((x - 1)(x - 1)) - 2
y = (x² - x - x + 1) - 2
y = x² - 2x + 1 - 2
y = x² - 2x - 1
x² - 2x - 1 = 0
x = <u>-(-2) +/- √((-2)² - 4(1)(-1))</u>
2(1)
x = <u>2 +/- √(4 + 4)</u>
2
x = <u>2 +/- √(8)</u>
2
x = <u>2 +/- 2.83</u>
2
x = 1 +/- 1.415
x = 1 + 1.415 x = 1 - 1.415
x = 2.415 x = 0.415
y = x² - 2x - 1
y = (2.145)² - 2(2.145) - 1
y = 4.60125 - 4.029 - 1
y = 0.57225 - 1
y = 0.42775
(x, y) = (2.415, 0.42775)
or
y = x² - 2x - 1
y = (0.415)² - 2(0.415) - 1
y = 0.172225 - 0.83 - 1
y = -0.657775 - 1
y = -1.657775
(x, y) = (0.415, -1.657775)
<u>y-intercept</u>
y = x² - 2x - 1
y = (0)² - 2(0) - 1
y = 0 - 0 - 1
y = 0 - 1
y = -1
(x, y) = (0, -1)
Select the correct answer. which data set is the farthest from a normal distribution? a. 2, 3, 3, 4, 4, 4, 5, 5, 6 b. 3, 4, 5, 6
tigry1 [53]
The answer choice which is the farthest from a normal distribution is; Choice E; 2, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 10.
<h3>Which data set is farthest from a normal distribution?</h3>
A normal distribution, is a data set which when graphed must follow a bell-shaped symmetrical curve centered around the mean. Additionally, such distribution must adhere to the empirical rule that indicates the percentage of the data set that falls within (plus or minus) 1, 2 and 3 standard deviations of the mean.
On this note, upon evaluation of the data sets, it follows that answer choice E represents the data set that's most farthest from a normal distribution.
Read more on normal distribution;
brainly.com/question/26678388
#SPJ4
Throwing a ball, shooting a cannon, diving from a platform and hitting a golf ball are all examples of situations that can be modeled by quadratic functions. ... In many of these situations you will want to know the highest or lowest point of the parabola, which is known as the vertex.