1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
QveST [7]
3 years ago
7

Pre-Cal - Someone please help! (Image Attached)

Mathematics
1 answer:
olasank [31]3 years ago
6 0
Note that \displaystyle{ \sin30^{\circ}= \frac{1}{2} and \displaystyle{ \cos30^{\circ}= \frac{ \sqrt{3}}{2}.

From the unit circle, we can check that \sin30^{\circ} and \sin(-30)^{\circ} have the same value, but opposite signs, that is:

\sin(-30)^{\circ}=-\sin(30)^{\circ}=-\frac{1}{2}. 


Thus, 
\displaystyle{ \cos(x-y)= \cos(-30^{\circ}-60^{\circ})=cos(-90^{\circ}).


Note that cos(-90^{\circ}) is the x-coordinate of the lowest point on the unit circle, that is (0, -1). Thus cos(-90^{\circ})=0


Answer: 0

You might be interested in
A normally distributed random variable with mean 4.5 and standard deviation 7.6 is sampled to get two independent values, X1 and
mr Goodwill [35]

Answer:

Bias for the estimator = -0.56

Mean Square Error for the estimator = 6.6311

Step-by-step explanation:

Given - A normally distributed random variable with mean 4.5 and standard deviation 7.6 is sampled to get two independent values, X1 and X2. The mean is estimated using the formula (3X1 + 4X2)/8.

To find - Determine the bias and the mean squared error for this estimator of the mean.

Proof -

Let us denote

X be a random variable such that X ~ N(mean = 4.5, SD = 7.6)

Now,

An estimate of mean, μ is suggested as

\mu = \frac{3X_{1} + 4X_{2}  }{8}

Now

Bias for the estimator = E(μ bar) - μ

                                    = E( \frac{3X_{1} + 4X_{2}  }{8}) - 4.5

                                    = \frac{3E(X_{1}) + 4E(X_{2})}{8} - 4.5

                                    = \frac{3(4.5) + 4(4.5)}{8} - 4.5

                                    = \frac{13.5 + 18}{8} - 4.5

                                    = \frac{31.5}{8} - 4.5

                                    = 3.9375 - 4.5

                                    = - 0.5625 ≈ -0.56

∴ we get

Bias for the estimator = -0.56

Now,

Mean Square Error for the estimator = E[(μ bar - μ)²]

                                                             = Var(μ bar) + [Bias(μ bar, μ)]²

                                                             = Var( \frac{3X_{1} + 4X_{2}  }{8}) + 0.3136

                                                             = \frac{1}{64} Var( {3X_{1} + 4X_{2}  }) + 0.3136

                                                             = \frac{1}{64} ( [{3Var(X_{1}) + 4Var(X_{2})]  }) + 0.3136

                                                             = \frac{1}{64} [{3(57.76) + 4(57.76)}]  } + 0.3136

                                                             = \frac{1}{64} [7(57.76)}]  } + 0.3136

                                                             = \frac{1}{64} [404.32]  } + 0.3136

                                                             = 6.3175 + 0.3136

                                                              = 6.6311

∴ we get

Mean Square Error for the estimator = 6.6311

6 0
3 years ago
Using the 3 functions below, make the desired transformation(s) to the correct function and describe the transformation(s). Writ
Eduardwww [97]

Answer:

The transformation of g(x) to k(x) consists in a vertical translation. The new equation is k(x) = -12\cdot x-6.

Step-by-step explanation:

Let g(x) = -12\cdot x - 3. We proceed to make the required transformations on g(x), which consists in one vertical translation, 3 units in the -y direction. That is to say:

k(x) = g(x) - 3 (1)

k(x) = (-12\cdot x - 3) - 3

k(x) = -12\cdot x-6

Then, the transformation of g(x) to k(x) consists in a vertical translation. The new equation is k(x) = -12\cdot x-6.

5 0
3 years ago
If (x)=2x^2-x-6 and g(x)=x^2-4, find f(x) ÷g(x)
liq [111]
F(x) / g(x) = (2x + 3)(x-2)/(x-2)(x+2) = (2x+3)/(x+2) 
6 0
3 years ago
Can i get your help on the answer please :))
Paraphin [41]

Answer:

the right answer is D

4 0
3 years ago
A new shopping mall records 120 total shoppers on their first day of business. Each day after that, the number of shoppers is 10
Iteru [2.4K]

Answer:

1,139\ shoppers

Step-by-step explanation:

we know that

In this problem we have a exponential function of the form

y=a(b)^{x}

where

a is the initial value or y-intercept

b is the base of the exponential function

r is the rate in decimal form

b=(1+r)

In this problem we have

x ----> the number of days

y ----> the number of shoppers

a=120

r=10%=10/100=0.10

b=1+0.10=1.10

substitute the values

y=120(1.10)^{x}

First day

y=120

Second day

For x=1 day

substitute the value of x in the equation and solve for y

y=120(1.10)^{1}=132

Third day

For x=2 days

y=120(1.10)^{2}=145

Fourth day

For x=3 days

y=120(1.10)^{3}=160

Fifth day

For x=4 days

y=120(1.10)^{4}=176

Sixth day

For x=5 days

y=120(1.10)^{5}=193

Seventh day

For x=6 days

y=120(1.10)^{6}=213

Adds the numbers

120+132+145+160+176+193+213=1,139

3 0
3 years ago
Read 2 more answers
Other questions:
  • What is 36/4 as a mixed number
    15·1 answer
  • kim had 13 pencils, she gave some pencils to her friend, and then sge got 2 new pencils. now she has 9 pencils. how many did she
    13·2 answers
  • Oranges cost 21 cents each.
    7·1 answer
  • 12per cent of 23563412
    7·1 answer
  • 25x - 20y= -100<br><br> x-intercept:__________<br> y-intercept:__________
    14·1 answer
  • What does coincides mean in geometry
    10·1 answer
  • EMERGENCY PLS HELP: What is the area of the triangle?
    5·2 answers
  • A triangle was dilated by a scale factor of 2. If cos a° = three fifths and segment FD measures 6 units, how long is segment DE?
    11·2 answers
  • It takes Ernie 45 hours to paint the house alone. Silene can do it in 36 hours alone. How long
    12·1 answer
  • CARL HAS $30 TO SPEND AT
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!