Answer:
1/3000
Step-by-step explanation:
3 meters to centimeters:
3 × 100 = 300
= 1/10 ÷ 300
= 1/10/300
= 1/(10×300)
= 1/3000
Answer:
It means
also converges.
Step-by-step explanation:
The actual Series is::

The method we are going to use is comparison method:
According to comparison method, we have:

If series one converges, the second converges and if second diverges series, one diverges
Now Simplify the given series:
Taking"n^2"common from numerator and "n^6"from denominator.
![=\frac{n^2[7-\frac{4}{n}+\frac{3}{n^2}]}{n^6[\frac{12}{n^6}+2]} \\\\=\frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{n^4[\frac{12}{n^6}+2]}](https://tex.z-dn.net/?f=%3D%5Cfrac%7Bn%5E2%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7Bn%5E6%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D%20%5C%5C%5C%5C%3D%5Cfrac%7B%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7Bn%5E4%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D)
![\sum_{n=1}^{inf}a_n=\sum_{n=1}^{inf}\frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{[\frac{12}{n^6}+2]}\ \ \ \ \ \ \ \ \sum_{n=1}^{inf}b_n=\sum_{n=1}^{inf} \frac{1}{n^4}](https://tex.z-dn.net/?f=%5Csum_%7Bn%3D1%7D%5E%7Binf%7Da_n%3D%5Csum_%7Bn%3D1%7D%5E%7Binf%7D%5Cfrac%7B%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7B%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5Csum_%7Bn%3D1%7D%5E%7Binf%7Db_n%3D%5Csum_%7Bn%3D1%7D%5E%7Binf%7D%20%5Cfrac%7B1%7D%7Bn%5E4%7D)
Now:
![\sum_{n=1}^{inf}a_n=\sum_{n=1}^{inf}\frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{[\frac{12}{n^6}+2]}\\ \\\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{[7-\frac{4}{n}+\frac{3}{n^2}]}{[\frac{12}{n^6}+2]}\\=\frac{7-\frac{4}{inf}+\frac{3}{inf}}{\frac{12}{inf}+2}\\\\=\frac{7}{2}](https://tex.z-dn.net/?f=%5Csum_%7Bn%3D1%7D%5E%7Binf%7Da_n%3D%5Csum_%7Bn%3D1%7D%5E%7Binf%7D%5Cfrac%7B%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7B%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D%5C%5C%20%5C%5C%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%5B7-%5Cfrac%7B4%7D%7Bn%7D%2B%5Cfrac%7B3%7D%7Bn%5E2%7D%5D%7D%7B%5B%5Cfrac%7B12%7D%7Bn%5E6%7D%2B2%5D%7D%5C%5C%3D%5Cfrac%7B7-%5Cfrac%7B4%7D%7Binf%7D%2B%5Cfrac%7B3%7D%7Binf%7D%7D%7B%5Cfrac%7B12%7D%7Binf%7D%2B2%7D%5C%5C%5C%5C%3D%5Cfrac%7B7%7D%7B2%7D)
So a_n is finite, so it converges.
Similarly b_n converges according to p-test.
P-test:
General form:

if p>1 then series converges. In oue case we have:

p=4 >1, so b_n also converges.
According to comparison test if both series converges, the final series also converges.
It means
also converges.
The area of the square is 81 sq in, and the area of the circule is (3.14)(3 in)^2, or approx 3.14(9) sq in, or approx 28.27 sq in.
Subtract: 81 sq in - 28.27 sq in = approx. 52.73 sq in.
The difference is 52.73 sq in; the square is larger, the circle smaller.
Answer:
Example = ( 12, 1 )
Step-by-step explanation:
There are many possible solutions to this equation, and all you would have to do to determine the ordered pair, is satisfy the following criteria -

Take a look at a graph of the line y = 1 / 6x - 1. Any ordered pair that lies on this line is a solution to the equation. The " criteria " is that the ordered pair must lie on this line. Let me give you an example, ( 12, 1 ).
<u><em>Hope that helps!</em></u>
Answer:
[A] (4 ÷ 2)+(0.8 ÷ 2)
Step-by-step explanation:
Divide the 2 into each digit, which must be in the same spot it was before:
Knowing that 8 in 4.8 ⇒ 0.8
Thus, you can infer that [B] is wrong
You also infer that [D] and [C] is wrong because 4 is a whole number.
Thus, that left us with [A] 4 ÷ 2+0.8 ÷ 2 which shows the quotient of 4.8 ÷ 2
Hence, [A] 4 ÷ 2+0.8 ÷ 2 is the answer.
<em>~Learn with Lenvy~</em>