1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Komok [63]
3 years ago
7

Find a vector 3 units long in the opposite direction from v = 〈3, 1,-4).

Mathematics
1 answer:
lutik1710 [3]3 years ago
5 0

Unit vector along the direction v = <3,1,-4> is :

\hat{v} = \dfrac{3i + j  -4k}{\sqrt{3^2 + 1^2 + 4^2}}\\\\\hat{v} = \dfrac{3i + j -4k}{5.1}

So, unit vector opposing the \hat{v} is :

\hat{v'} = -\hat{v}\\\\\hat{v'} = -( \dfrac{3i + j -4k}{5.1})\\\\\hat{v'} = \dfrac{-3i - j +4k}{5.1}

so, vector of magnitude 3 units in opposite direction from v is :

\vec{V} = 3\hat{v'}\\\\\vec{V} = \dfrac{3}{5.1}( -3i -j+4k)

Hence, this is the required solution.

You might be interested in
How do I draw perpendicular line
taurus [48]

Answer:

Follow these steps and you will find how to make a perpendicular line.

Step-by-step explanation:

Open the compass to a radius less than half the segment.

Draw two arcs intersecting the line on both sides of the point.

Draw two arcs using the intersection points as the centers. ...

Construct a line between this point and the original point.

Hope this helped :) -ish

5 0
2 years ago
Please help me solve this problem ASAP
DiKsa [7]

\bold{\huge{\blue{\underline{ Solution }}}}

<h3><u>Given </u><u>:</u><u>-</u></h3>

  • <u>The </u><u>right </u><u>angled </u><u>below </u><u>is </u><u>formed </u><u>by </u><u>3</u><u> </u><u>squares </u><u>A</u><u>, </u><u> </u><u>B </u><u>and </u><u>C</u>
  • <u>The </u><u>area </u><u>of </u><u>square </u><u>B</u><u> </u><u>has </u><u>an </u><u>area </u><u>of </u><u>1</u><u>4</u><u>4</u><u> </u><u>inches </u><u>²</u>
  • <u>The </u><u>area </u><u>of </u><u>square </u><u>C </u><u>has </u><u>an </u><u>of </u><u>1</u><u>6</u><u>9</u><u> </u><u>inches </u><u>²</u>

<h3><u>To </u><u>Find </u><u>:</u><u>-</u></h3>

  • <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>area </u><u>of </u><u>square </u><u>A</u><u>? </u>

<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u><u> </u></h3>

The right angled triangle is formed by 3 squares

<u>We </u><u>have</u><u>, </u>

  • Area of square B is 144 inches²
  • Area of square C is 169 inches²

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{ Area \: of \: square =  Side × Side }

Let the side of square B be x

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 144 =  x × x }

\sf{ 144 =  x² }

\sf{ x = √144}

\bold{\red{ x = 12\: inches }}

Thus, The dimension of square B is 12 inches

<h3><u>Now, </u></h3>

Area of square C = 169 inches

Let the side of square C be y

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 169 =  y × y }

\sf{ 169 =  y² }

\sf{ y = √169}

\bold{\green{ y = 13\: inches }}

Thus, The dimension of square C is 13 inches.

<h3><u>Now, </u></h3>

It is mentioned in the question that, the right angled triangle is formed by 3 squares

The dimensions of square be is x and y

Let the dimensions of square A be z

<h3><u>Therefore</u><u>, </u><u>By </u><u>using </u><u>Pythagoras </u><u>theorem</u><u>, </u></h3>

  • <u>The </u><u>sum </u><u>of </u><u>squares </u><u>of </u><u>base </u><u>and </u><u>perpendicular </u><u>height </u><u>equal </u><u>to </u><u>the </u><u>square </u><u>of </u><u>hypotenuse </u>

<u>That </u><u>is</u><u>, </u>

\bold{\pink{ (Perpendicular)² + (Base)² = (Hypotenuse)² }}

<u>Here</u><u>, </u>

  • Base = x = 12 inches
  • Perpendicular = z
  • Hypotenuse = y = 13 inches

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ (z)² + (x)² = (y)² }

\sf{ (z)² + (12)² = (169)² }

\sf{ (z)² + 144 = 169}

\sf{ (z)² = 169 - 144 }

\sf{ (z)² = 25}

\bold{\blue{ z = 5 }}

Thus, The dimensions of square A is 5 inches

<h3><u>Therefore</u><u>,</u></h3>

Area of square

\sf{ = Side × Side }

\sf{ = 5 × 5  }

\bold{\orange{ = 25\: inches }}

Hence, The area of square A is 25 inches.

6 0
2 years ago
Calculate the percent change if a city that used to produce 2050 kilowatt hours has reduced their consumption to 1125 kilowatt h
Crazy boy [7]

The percent change if a city that used to produce 2050 kilowatt hours has reduced their consumption to 1125 kilowatt hours is 45.122% decrease.

<h3>What is percentage change?</h3>

Percent increase and percent decrease are measures of percent change, which is the extent to which a variable gains or loses intensity, magnitude, extent, or value.

we know,

% change = (final- initial) / initial * 100

=(1125-2050)/1125 *100

=45.122%

Hence, percentage change be 45.122% decrease.

Learn more about percentage change here:

brainly.com/question/14656289

#SPJ1

5 0
2 years ago
Three friends went to a fundraiser at a local restaurant. Each plate cost $7.95, which included a drink. A tip of 20% was left f
miskamm [114]

Answer:

159  try it

Step-by-step explanation:

6 0
2 years ago
Can somebody help me with this one thank you.
gtnhenbr [62]
It would be 11 liters
4 0
3 years ago
Other questions:
  • 19. Determine the number of five-letter code words that can be formed from the word mommy.
    11·1 answer
  • What is the solution to –122 &lt; –3(–2 – 8x) – 8x?
    6·1 answer
  • If f(x) = -X^3+3x+2. Find f(-1).
    13·1 answer
  • What is the equation of 60km
    13·1 answer
  • Simplify: (4x2 − 8xy + 2y2) − (9x2 − 4xy − 7y2)
    8·2 answers
  • Can y’all answer both please .
    5·1 answer
  • A genius society requires an IQ that is in the top 2% of the population in order to join. If an IQ test has a mean of 100 and a
    8·1 answer
  • Find the area of the regular polygon. Give the answer to the nearest tenth.
    13·1 answer
  • Which expression is equivalent to –3(u+7)<br> PLEASE ANSWER THE QUESTION
    6·1 answer
  • Ismelda watches a soap bubble resting on a driveway. The bubble is in the shape of a hemisphere. When the bubble pops, the soap
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!