Chemical reaction: 2A + B → unkwown product.
Molecularity<span> is the number of molecules that come together to react in an </span>elementary (single-step) reaction and Molecularity<span> in </span>chemistry<span> is the number of molecules that come together to react in an </span>elementary (single-step) reaction <span>and is equal to the sum of </span>stoichiometric coefficients<span> of reactants in this elementary reaction.
</span>This reaction is <span>termolecular </span><span>(or trimolecular) because three molecules react (two A and one B).</span>
Stoichiometry:
First, calculate the number of grams for one mole of Ca3 (PO3)4
(3 * (Mass of Ca)) + (4 * (Mass of P + (3 * Mass of Oxygen)))
= (3*40.08) + 4(30.97 + (3*16.00))
=(120.24) + 4(78.97)
=436.12 g / mol Ca3(PO3)4
This means there are 436.12 g per 1 mole of Ca(PO3)4. Since there are 4.50 moles of Calcium Phosphate, mulitply the molar mass of Ca(PO3)4 by 4.50 and you should get 1962.54 g. Since there are 3 sigfigs, the final answer is 1960 g.
on a side note: I put in all my work in case 1. your periodic table if different, 2. my work is wrong, 3. you put in the question wrong because I feel that the actual compound would be Ca3(PO4)3 instead of Ca3(PO3)4 (if this is the case, the answer should be 1820 g).
Answer:
N = n× l
N = number of entities
n= moles
l = Avogadro's constant = 6.023 × 10^23
3.01 × 10^ 23 = n * 6.023 × 10^23
n = 3.01 × 10^23/6.023 × 10^23
n= 0.5moles
Molar mass = mass/ number of moles
Molar mass = 56
mass = 56 × 0.5
= 28g
Hope this helps.
Answer:
i would assume that it would be (a)
Explanation:
The Sun generates its energy by nuclear fusion
NUCLEAR FISSION is when the heavy atom is split
fusion energy is scientifically feasible. Plasma conditions that are very close to those required in a fusion reactor are now routinely reached in experiments
mass gets lost is nuclear fusion
so (a) is the most accurate