Answer:
B
Step-by-step explanation:
Those lines both make up the tip of the triangle figure...
Answer:
Step-by-step explanation:
The associative property states that you can add or multiply regardless of how the numbers are grouped.
Answer:
(a)123 km/hr
(b)39 degrees
Step-by-step explanation:
Plane X with an average speed of 50km/hr travels for 2 hours from P (Kano Airport) to point Q in the diagram.
Distance = Speed X Time
Therefore: PQ =50km/hr X 2 hr =100 km
It moves from Point Q at 9.00 am and arrives at the airstrip A by 11.30am.
Distance, QA=50km/hr X 2.5 hr =125 km
Using alternate angles in the diagram:

(a)First, we calculate the distance traveled, PA by plane Y.
Using Cosine rule

SInce aeroplane Y leaves kano airport at 10.00am and arrives at 11.30am
Time taken =1.5 hour
Therefore:
Average Speed of Y

(b)Flight Direction of Y
Using Law of Sines
![\dfrac{p}{\sin P} =\dfrac{q}{\sin Q}\\\dfrac{125}{\sin P} =\dfrac{184.87}{\sin 110}\\123 \times \sin P=125 \times \sin 110\\\sin P=(125 \times \sin 110) \div 184.87\\P=\arcsin [(125 \times \sin 110) \div 184.87]\\P=39^\circ $ (to the nearest degree)](https://tex.z-dn.net/?f=%5Cdfrac%7Bp%7D%7B%5Csin%20P%7D%20%3D%5Cdfrac%7Bq%7D%7B%5Csin%20Q%7D%5C%5C%5Cdfrac%7B125%7D%7B%5Csin%20P%7D%20%3D%5Cdfrac%7B184.87%7D%7B%5Csin%20110%7D%5C%5C123%20%5Ctimes%20%5Csin%20P%3D125%20%5Ctimes%20%5Csin%20110%5C%5C%5Csin%20P%3D%28125%20%5Ctimes%20%5Csin%20110%29%20%5Cdiv%20184.87%5C%5CP%3D%5Carcsin%20%5B%28125%20%5Ctimes%20%5Csin%20110%29%20%5Cdiv%20184.87%5D%5C%5CP%3D39%5E%5Ccirc%20%24%20%28to%20the%20nearest%20degree%29)
The direction of flight Y to the nearest degree is 39 degrees.
Answer: 0.025
Step-by-step explanation:
Given : A statistics professor plans classes so carefully that the lengths of her classes are uniformly distributed between the interval [48.0 minutes, 58.0 minutes].
The probability density function :-

Now, the probability that a given class period runs between 50.25 and 50.5 minutes is given by :-
![\int^{50.5}_{50.25}\ f(x)\ dx\\\\=\int^{50.5}_{50.25}\ \dfrac{1}{10}\ dx\\\\=\dfrac{1}{10}|x|^{50.5}_{50.25}\\\\=\dfrac{1}{10}\ [50.5-50.25]=\dfrac{1}{10}\times(0.25)=0.025](https://tex.z-dn.net/?f=%5Cint%5E%7B50.5%7D_%7B50.25%7D%5C%20f%28x%29%5C%20dx%5C%5C%5C%5C%3D%5Cint%5E%7B50.5%7D_%7B50.25%7D%5C%20%5Cdfrac%7B1%7D%7B10%7D%5C%20dx%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B10%7D%7Cx%7C%5E%7B50.5%7D_%7B50.25%7D%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B10%7D%5C%20%5B50.5-50.25%5D%3D%5Cdfrac%7B1%7D%7B10%7D%5Ctimes%280.25%29%3D0.025)
Hence, the probability that a given class period runs between 50.25 and 50.5 minutes =0.025
Similarly , the probability of selecting a class that runs between 50.25 and 50.5 minutes = 0.025