Answer:
oxygen, and hydrogen and carbon... those are all things that make up the elements.
Explanation:
Answer:
Adding heat and increasing concentration are meant to cause an increase in the rate of a reaction
Explanation:
The rate of a chemical reaction is defined as the number of moles of reactants converted or products formed pee unit time. It is a measure of how quickly the reactants in a given reaction are used up to form products or how quickly products are formed from reactants.
Factors that affect the rate of a chemical reaction include:
1. Nature of reactants
2. Concentration/pressure (for gases) of reactants
3. Temperature of reaction mixture
4. Presence of light
5. Presence of a catalyst
The effect of increasing the concentration of reactants for a given chemical reaction is that the reaction rate will increase. This is so because, according to the collision theory of chemical reactions, the frequency of collision between reactant particles which results in a chemical reaction (effective collisions) will increase when the reactant particles are crowded together in a small space due to an increase in their concentration.
The effect of increasing temperature or adding heat to a reaction is that the reaction rate increases. When the heat is added to a reactant particles, the number of particles with energies greater than or equal to the activation energy (the minimum amount of energy that reactant particles must possess for effective collisions) increases. Also, the average speed of the reactant particles increases resulting in a greater frequency of collision. Hence, the rate of the chemical reaction increases.
I believe it would be c: 3 because you can have the numbers -1,0,1.
<u>Answer:</u>
Exothermic Reaction are those reaction, in which energy is released while in endothermic reaction are those, in which energy is absorbed.
<u>Explanation:</u>
First Reaction:
As in this reaction, energy is released
½H2(g) + ½I2(g) → HI(g), ΔH = +6.2 kcal/mole
so it is <em>exothermic reaction</em>
Second reaction:
As in this reaction, energy is absorbed
21.0 kcal/mole + C(s) + 2S(s) → CS2(l)
so it is <em>endothermic reactions</em>.
The reaction for burning of charcoal or complete combustion is as follows:

From the above balanced reaction, 1 mole of carbon releases 1 mole of
gas.
Converting mass of charcoal into moles as follows:

Molar mass of pure carbon is 12 g/mol thus,

The same moles of
is released. Converting these moles into mass as follows:
m=n×M
Molar mass of
is 44 g/mol thus,

Converting mass into kg,

Thus, total mass of gas released is 5.5 kg.