<h2><u><em>Answer:</em></u></h2><h2><em>A Pascal triangle is the triangular way of expanding a binomial. So the best way in expanding that function is thru Binomial Theorem and the expanded for of it is 8x^3+48x^2+98x+64
</em></h2><h2><em></em></h2><h2><u><em>Step-by-step explanation:</em></u></h2><h2><em>Before even trying to put this into the binomial form, we must figure out the coefficients. If we go by the Pascal's Triangles way we should end up with:
</em></h2><h2><em></em></h2><h2><em> 1
</em></h2><h2><em></em></h2><h2><em> 1 1
</em></h2><h2><em></em></h2><h2><em> 1 2 1
</em></h2><h2><em></em></h2><h2><em>1 3 3 1
</em></h2><h2><em></em></h2><h2><em>Going by the last level (which is the third level) we get 3C0:1, 3C1:3, 3C2:3, 3C3:1.
</em></h2><h2><em></em></h2><h2><em>Now with the equation: (a+b)^3 = 3C0a^3 + 3C1a^2 b + 3C2a b^2 + 3C3b^3 we just plug in all the values and simplify
</em></h2><h2><em></em></h2><h2><em>(2x+4)^3 = 2x^3 + 3(2x)^2 (4) + 3(2x) (4)^2 + (4)^3
</em></h2><h2><em></em></h2><h2><em>(2x+4)^3 = 8x^3 + (3)(4x^2)(4) + (3)(2x)(16) + 64
</em></h2><h2><em></em></h2><h2><em>Then we finally end with: (2x+4)^3 = 8x^3 48x^2 + 96x +64
</em></h2>
A) 180-125 =55 B) both bottom angles are 55 and the triangle's angles should add up to 180, so 55 + 55 + x = 180. X = 70 C) CAE and CBD are equal so the bottom angle (that was calculated in A) will be the base acute angle —>55