Auxin, which is produced by the apical bud, encourages the growth of apical buds while inhibiting the growth of lateral buds that are located lower on the stem, toward the axillary bud.
<h3>
What does a shoot's apical bud produce?</h3>
Auxin, a hormone produced by the apical bud, travels via the plant's circulatory system (phloem) down the stem and prevents axillary buds from expanding, which would otherwise result in the production of additional side shoots from the plant cells.
<h3>What function does auxin serve?</h3>
Auxin plays a crucial role in controlling plant growth and development by regulating embryonic development, root and stem tropisms, apical dominance,and the transition to blooming..
<h3>What are the four roles that auxins play?</h3>
- Its primary uses are to stimulate shoot growth in culture and to enhance lateral and accidental shoot growth.
- aids in overcoming auxin-induced apical dominance.
- encourage the development of leaves' chloroplasts.
- encourages the mobilization of nutrients and delays leaf senescence.
learn more about Auxin here
<u>brainly.com/question/23092295</u>
#SPJ4
Answer:
A mutation in <u>DNA </u>results in a change in <u>RNA </u>that sometimes produces a <u>protein </u>with altered structure and function.
Explanation:
DNA is the hereditary material which causes gene expression in our body by producing protein. The type of protein which is produced by DNA totally depends upon the sequence of nucleotides in the DNA. But, DNA molecule does not produce protein directly. Initially it produces RNA (mRNA, tRNA, rRNA) by the process of transcription, the nucleotides in the RNA are complimentary to those in DNA. In short, the message regarding the structure and composition of the type protein to be produced by DNA is first decoded from DNA in the form of RNA. These RNA molecules then synthesize the protein as per the instructions from DNA by the process of translation.
But, in case a mutation occurs in the DNA which causes a change in it's nucleotide/nucleotides, the protein which will be produced will be different in the structure and function than the protein which was supposed to be synthesized. It happens because, a triplet of nucletiodes in the DNA and hence RNA specifies a particular type of amino acid and several amino acids are joined in a long chain to form polypeptide which ultimately forms protein. But, if any nucleotide in the triplet is changed due to mutation it may change the amino acid and if amino acid will change the protein will also get altered.
Shorter is the correct answer I think. Could you please be stormy me brainliest bestie.
Answer:
It occurs in the cytoplasm. Glycolysis also involves two stages which break up glucose. In the 1st stage, Glucose is broken into two phosphorylated 3-carbon compounds through a series of reactions.
Overall, minerals from animal products are better absorbed than those from plant because binders such as fiber are not present to hinder absorption.