Answer:
0.483
Explanation:
The given population is in Hardy-Weinberg equilibrium. If the gene has two alleles, the sum total of the frequencies of these two alleles will be one.
Therefore, the total of the frequency of allele B and frequency of allele b will be 1. f(B) + f(b)=1
If the frequency of allele "B" is 0.59, then the frequency of allele "b" will be=1-0.59= 0.41
The frequency of heterozygous genotype in the population= 2pq
p= frequency of the dominant allele
q= frequency of the recessive allele
So, 2pq= 2 x 0.59 x 0.41 = 0.483
Answer: The frequency of brown beetles is 0.32.
Explanation: The frequency of A1 allele is 0.8. As p+q=1, or the sum of dominant and recessive frequencies equals 1 or 100%:
1 - 0.8 = 0.2
In Hardy-Weinberg principle,

2pq represents the frequency of heterozygote individuals, so:
genotype A1A2 = 2*0.8*0.2 = 0.32.
Thus, the frequency of brown beetles (A1A2) in the population is 0.32.
Answer: D - Eukaryotic
Explanation: Can not be A, B or C
- Prokaryotic cells can not make up multicellular organisms
- Bacterial cells are prokaryotes and unicellular
- Not all multicellular organisms are plants and are therefore not all made of plant cells
True ..In animals, the female mitotic sequence produces only one ovum; the other three haploid cells become "polar bodies".