Protons in science is positive
<span>In order for Drix to stay in Frank's body, he will need a lawyer. Ozzie (Osmosis Jones) suggests that "we'll go down to the hemorrhoid and get you a good lawyer."</span>
Answer:
The
for the reaction
will be 4.69.
Explanation:
The given equation is A(B) = 2B(g)
to evaluate equilibrium constant for 
![K_c=[B]^2[A]](https://tex.z-dn.net/?f=K_c%3D%5BB%5D%5E2%5BA%5D)
= 0.045
The reverse will be 
Then, ![K_c = \frac{[A]}{[B]^2}](https://tex.z-dn.net/?f=K_c%20%3D%20%5Cfrac%7B%5BA%5D%7D%7B%5BB%5D%5E2%7D)
= 
= 
The equilibrium constant for
will be


= 4.69
Therefore,
for the reaction
will be 4.69.
Answer:
1.7927 mL
Explanation:
The mass of solid taken = 4.75 g
This solid contains 21.6 wt%
, thus,
Mass of
=
= 1.026 g
Molar mass of
= 261.337 g/mol
The formula for the calculation of moles is shown below:
Thus,

Considering the reaction as:

1 moles of
react with 1 mole of 
Thus,
0.003926 mole of
react with 0.003926 mole of 
Moles of
= 0.003926 mole
Also, considering:

Molarity = 2.19 M
So,

Volume = 0.0017927 L
Also, 1 L = 1000 mL
<u>So, volume = 1.7927 mL</u>
The answer is combustion
hope this helps