<u>Answer:</u> The correct answer is Option 5.
<u>Explanation:</u>
- To calculate the molarity of the solution after mixing 2 solutions, we use the equation:

where,
are the n-factor, molarity and volume of the NaOH.
are the n-factor, molarity and volume of the 
We are given:
Putting all the values in above equation, we get:

- To calculate the molarity of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base.
We are given:

Putting values in above equation, we get:

Hence, the correct answer is Option 5.
Answer:
There are 12 atoms in the compound
Hmm the answer is 2.454
No explanation needed it’s just 2.454
Answer :
(A) The number of moles of
ions per liter is, 0.1 moles/L
(B) The number of molecules of
ion is, 
(C) The pH of the solution will be, 4
<u>Solution for part A :</u>
First we have to calculate the pOH of the solution.
As we know that,

Now we have to calculate the moles of
ion per liter.
![pOH=-\log [OH^-]\\\\1=-\log [OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%20%5BOH%5E-%5D%5C%5C%5C%5C1%3D-%5Clog%20%5BOH%5E-%5D)
![[OH^-]=0.1moles/L](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.1moles%2FL)
<u>Solution for part B :</u>
First we have to calculate the
ion concentration.
![pH=-\log [H^+]\\\\13=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D%5C%5C%5C%5C13%3D-%5Clog%20%5BH%5E%2B%5D)
![[H^+]=10^{-13}moles/L](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-13%7Dmoles%2FL)
Now we have to calculate the number of molecules of
ion
As, 1 mole contains
number of molecules of
ion
So,
moles contains
number of molecules of
ion
<u>Solution for part C :</u>
![pH=-\log [H^+]\\\\pH=-\log (1\times 10^{-4})](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D%5C%5C%5C%5CpH%3D-%5Clog%20%281%5Ctimes%2010%5E%7B-4%7D%29)

Answer:
The new pressure exerted by the He, is 1266.6 Torr
Explanation:
A typical problem of gases where the volume is increased and the moles and T° keeps on constant. This is an indirect proportion because when the volume of the flask is increased, pressue decreases because molecules collide to a lesser extent with the walls of the vessel.
P₁ . V₁ = P₂ . V₂
760 Torr . 5L = P₂ . 3L
P₂ = (760 Torr . 5L) / 3L
P₂ = 1266.6 Torr