Yes you do cause its more explanation to
<span />
The empirical formula CH₂O has a mass [(12 × 1) + (1 × 2) + (16 × 1)] = 30 g/mol
If the empirical formula is 30 g/mol,
and the molecular formula is 60 g/mol
Then the multiple is = 60 g/mol ÷ 30 g/mol
= 2
Therefor the molecular formula is 2(CH₂O) = C₂H₄O₂ (OPTION 2)
KH₂PO₄ hydrolyzes as;
H₂PO₄⁻ + H₂O ↔ H₃PO₄ + OH⁻
Let x amount of H₂PO₄⁻ has reacted with water then,
Kb₁ = [H₃PO₄][OH⁻] / [H₂PO₄⁻]
[H₂PO₄⁻] = 0.8-x M
Kb₁ = x² / (0.8 - x)
Given Ka₁ = 7.5 x 10⁻³
so Kb₁ = 1 x 10⁻¹⁴ / (7.5 x 10⁻³) = 1.33 x 10⁻¹²
From this information:
1.33 x 10⁻¹² = x² / 0.8
x = [OH⁻] = 1.03 x 10⁻⁶ M
pOH = - log (1.03 x 10⁻⁶) = 5.99
pH = 14 - pOH = 14 - 5.99 = 8.01
<span>The correct answer is b. Boiling point, why? because the liquid sample of napthalene is heated and remained at the temperature of 218 degrees celsius, the outcome was that the napthalene was completely vaporized, therefore we are given the scenario that at the temperature of 218 degrees celsius is considered to be the boiling pont of napthalene.</span>