1. find out many days are in a week (7)
thank subtract 1 from the week and then count every week friday i'm not sure if this is the correct answer but check your answer in case'
Check the picture below, so the parabola looks more or less like so, hmmm with a vertex at (-1 , -4), so, using those values from the table
![~~~~~~\textit{vertical parabola vertex form} \\\\ y=a(x- h)^2+ k\qquad \begin{cases} \stackrel{vertex}{(h,k)}\\\\ \stackrel{"a"~is~negative}{op ens~\cap}\qquad \stackrel{"a"~is~positive}{op ens~\cup} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=~~~~~~%5Ctextit%7Bvertical%20parabola%20vertex%20form%7D%20%5C%5C%5C%5C%20y%3Da%28x-%20h%29%5E2%2B%20k%5Cqquad%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7Bvertex%7D%7B%28h%2Ck%29%7D%5C%5C%5C%5C%20%5Cstackrel%7B%22a%22~is~negative%7D%7Bop%20ens~%5Ccap%7D%5Cqquad%20%5Cstackrel%7B%22a%22~is~positive%7D%7Bop%20ens~%5Ccup%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)
![\stackrel{vertex}{\stackrel{h}{-1}~~,~~\stackrel{k}{-4}}\qquad \implies y=a[x-(-1)]^2-4\implies y=a(x+1)^2-4 \\\\\\ \textit{we also know that} \begin{cases} x=2\\ y=14 \end{cases}\implies 14=a(2+1)^2-4\implies 18=9a \\\\\\ \cfrac{18}{9}=a\implies 2=a~\hspace{10em}\boxed{y=2(x+1)^2-4}](https://tex.z-dn.net/?f=%5Cstackrel%7Bvertex%7D%7B%5Cstackrel%7Bh%7D%7B-1%7D~~%2C~~%5Cstackrel%7Bk%7D%7B-4%7D%7D%5Cqquad%20%5Cimplies%20y%3Da%5Bx-%28-1%29%5D%5E2-4%5Cimplies%20y%3Da%28x%2B1%29%5E2-4%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Bwe%20also%20know%20that%7D%20%5Cbegin%7Bcases%7D%20x%3D2%5C%5C%20y%3D14%20%5Cend%7Bcases%7D%5Cimplies%2014%3Da%282%2B1%29%5E2-4%5Cimplies%2018%3D9a%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B18%7D%7B9%7D%3Da%5Cimplies%202%3Da~%5Chspace%7B10em%7D%5Cboxed%7By%3D2%28x%2B1%29%5E2-4%7D)
Answer:
SSS
Step-by-step explanation:
The tax added to $220 is solved by 220 X .0725 = 15.95. Add 15.95 to $220 and get $235.95. The tip (assuming it is 20% after tax ) is $235.95 X .20= $47.19
Add the $47.19 to $235.95= $283.14
The equation that represents the given situation is required.The cost of the ticket after L losses is a. Initial cost of the ticket = $49.64Price decrease per game lost = $0.41Number of games lost = LMoney lost after L losses is So, the cost of the ticket after L losses would be the initial cost of the ticket minus the money lost after L losses.The cost of the ticket after L losses is a.