Answer:
Traffic traveling north on Main Street must make a 125° turn onto the new road. This is the angle between where the traffic was originally headed and where it is headed after it makes the turn. Traffic on 2nd Street is traveling south, the opposite direction.
Let x be the number of pounds of the $1.35 beans. The cost of those beans is $1.35 * x, or 1.35x.
<span>Let y be the number of pounds of the $1.05 beans. The cost of those beans is $1.05 * y, or 1.05y. </span>
<span>We know that 120 pounds of the mix sells for $1.15/pound, for a total of 120 * 1.15 = $138. </span>
<span>x + y = 120 </span>
<span>1.35(x) + (1.05)y = 138 </span>
<span>We can rewrite the first as </span>
<span>x = -y + 120 </span>
<span>Now we can substitute (-y + 120) in for (x) in the second equation, because we just proved they're equal. </span>
<span>1.35(x) + 1.05(y) = 138 </span>
<span>1.35(-y + 120) + 1.05y = 138 </span>
<span>-1.35y + 162 + 1.05y = 138 </span>
<span>-0.3y + 162 = 138 </span>
<span>-0.3y = -24 </span>
<span>y = 80 </span>
<span>And since x + y = 120, that means x = 40. </span>
<span>Check: </span>
<span>40 pounds of x at $1.35 costs 40 * 1.35, or $54. </span>
<span>80 pounds of y at $1.05 costs 80 * 1.05, or $84. </span>
<span>Do those add up to our target total, according to the question, of 120 * 1.15 = $138? </span>
Bezels, gradients, and drop shadows can make an interface user-friendly if used wisely and minimally. If too much, the interface can be distracting. The problem used the term "maximal." This means that the bezels, gradients, and drop shadows are excessively used in an interface. So, the answer to this question is
FALSE
Using too much image effects can make an interface not user-friendly.<span />
Answer:
16 hours and 20 minutes.
Step-by-step explanation:
Please consider the complete question.
Rita's family is moving to Grand Junction to Dallas, which is 980 miles. The moving van averages 60 miles each hour. About how many hours does the van take to reach Dallas?
To find the time taken by van to reach Dallas, we will divide total distance by speed.





Let us convert 0.3333 hours into minutes by multiplying 0.3333 by 60.

Therefore, it will take 16 hours and 20 minutes for the van to reach Dallas.
If <em>c</em> > 0, then <em>f(x</em> - <em>c)</em> is a shift of <em>f(x)</em> by <em>c</em> units to the right, and <em>f(x</em> + <em>c)</em> is a shift by <em>c</em> units to the left.
If <em>d</em> > 0, then <em>f(x)</em> - <em>d</em> is a shift by <em>d</em> units downward, and <em>f(x)</em> + <em>d</em> is a shift by <em>d</em> units upward.
Let <em>g(x)</em> = <em>x</em>. Then <em>f(x)</em> = <em>g(x</em> + <em>a)</em> - <em>b</em> = (<em>x</em> + <em>a</em>) - <em>b</em>. So to get <em>g(x)</em>, we translate <em>f(x)</em> to the left by <em>a</em> units, and down by <em>b</em> units.
Note that we can also interpret the translation as
• a shift upward of <em>a</em> - <em>b</em> units, since
(<em>x</em> + <em>a</em>) - <em>b</em> = <em>x</em> + (<em>a</em> - <em>b</em>)
• a shift <em>b</em> units to the right and <em>a</em> units upward, since
(<em>x</em> + <em>a</em>) - <em>b</em> = <em>x</em> + (<em>a</em> - <em>b</em>) = <em>x</em> + (- <em>b</em> + <em>a</em>) = (<em>x</em> - <em>b</em>) + <em>a</em>.