Given:
The expression is
![\sqrt[3]{48}=\sqrt[3]{8\cdot \_\_}=](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B48%7D%3D%5Csqrt%5B3%5D%7B8%5Ccdot%20%5C_%5C_%7D%3D)
To find:
The simplified form of the expression.
Solution:
We have,
![\sqrt[3]{48}=\sqrt[3]{8\cdot \_\_}=](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B48%7D%3D%5Csqrt%5B3%5D%7B8%5Ccdot%20%5C_%5C_%7D%3D)
The expression
can be written as
![\sqrt[3]{48}=\sqrt[3]{8\cdot 6}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B48%7D%3D%5Csqrt%5B3%5D%7B8%5Ccdot%206%7D)
![[\because \sqrt[3]{ab}=\sqrt[3]{a}\sqrt[3]{b}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Csqrt%5B3%5D%7Bab%7D%3D%5Csqrt%5B3%5D%7Ba%7D%5Csqrt%5B3%5D%7Bb%7D%5D)
![\sqrt[3]{48}=2\cdot \sqrt[3]{6}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B48%7D%3D2%5Ccdot%20%5Csqrt%5B3%5D%7B6%7D)
![\sqrt[3]{48}=2\sqrt[3]{6}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B48%7D%3D2%5Csqrt%5B3%5D%7B6%7D)
Therefore,
.
This is the concept of volumes of solid figures;
volume=length*width*height
the dimensions of our figure is:
length=15 1/2 in=31/2 in
width=10 1/4 in=41/4 in
height= 12 in
thus the volume will be:
volume=(31/2*41/4*12)
volume=1906 1/2 in^3
the answer is 1906 1/2 in^3
Easiest way is if you substitute each point (x,y) into each set of equations and both points work for both equations in the system of equations, then it is the correct answer
Otherwise substitute one equation for y in the other equation:
2x + 6 = x^2 + 5x + 6
-2x - 6. -2x -6
0 = x^2 + 3x. Factor
0 = x (x + 3)
Solve: x = 0. x + 3 = 0. ——> x = -3. Substitute into one original equation to get y value for
y = 2x + 6.
y = 2(0) + 6. y = 2(-3) + 6
y = 6. y = -6 + 6 —-> y = 0
(0 , 6) And. (-3 , 0)