Answer:
profit section and that is answer A
Part A:
The average rate of change refers to a function's slope. Thus, we are going to need to use the slope formula, which is:

and
are points on the function
You can see that we are given the x-values for our interval, but we are not given the y-values, which means that we will need to find them ourselves. Remember that the y-values of functions refers to the outputs of the function, so to find the y-values simply use your given x-value in the function and observe the result:




Now, let's find the slopes for each of the sections of the function:
<u>Section A</u>

<u>Section B</u>

Part B:
In this case, we can find how many times greater the rate of change in Section B is by dividing the slopes together.

It is 25 times greater. This is because
is an exponential growth function, which grows faster and faster as the x-values get higher and higher. This is unlike a linear function which grows or declines at a constant rate.
Answer:
The answer is A
Step-by-step explanation:
A. The expression is equivalent, and it is completely factored.
Answer:

Step-by-step explanation:
Equation of a circle is given as :

Take the derivative of the above with respect to x

The equation of the tangent is given by :

Well this is simple a calculator type problem...but if you are curious as the the algorithm used by simple calculators and such...
They use a Newtonian approximation until it surpasses the precision level of the calculator or computer program..
A newtonian approximation is an interative process that gets closer and closer to the actual answer to any mathematical problem...it is of the form:
x-(f(x)/(df/dx))
In a square root problem you wish to know:
x=√n where x is the root and n is the number
x^2=n
x^2-n=0
So f(x)=x^2-n and df/dx=2x so using the definition of the newton approximation you have:
x-((x^2-n)/(2x)) which simplifies further to:
(2x^2-x^2+n)/(2x)
(x^2+n)/(2x), where you can choose any starting value of x that you desire (though convergence to an exact (if possible) solution will be swifter the closer xi is to the actual value x)
In this case the number, n=95.54, so a decent starting value for x would be 10.
Using this initial x in (x^2+95.54)/(2x) will result in the following iterative sequence of x.
10, 9.777, 9.774457, 9.7744565, 9.7744565066299210578124802523397
The calculator result for my calc is: 9.7744565066299210578124802523381
So you see how accurate the newton method is in just a few iterations. :P